FARKLI YAZDIRMA PARAMETRELERİNDE PLA FİLAMENTİN İŞLEM PERFORMANSININ İNCELENMESİ

Bu çalışmada, ticari bir PLA filament kullanılarak farklı sıcaklıklarda 3B yazdırılmış numunelerin özelliklerinin yazdırma hızına bağlı değişimleri incelenmiştir. Çalışma kapsamında filament malzemesinin 190°C, 200°C, 210°C ve 220°C sıcaklıklarındaki reolojik özellikleri Ergime Akış İndeksi (EAİ) kullanılarak belirlenmiştir. Numuneler 30, 50 ve 70 mm/saniye gibi üç farklı yazdırma hızlarında 3B yazdırılmış ve shore-D sertlik ve çekme testleri ile mekanik özellikleri incelenmiştir. Ayrıca yazdırma sıcaklığının malzemenin renginde sıcaklığa bağlı değişimi de renk analizörü ile test edilmiştir. Çalışmada farklı sıcaklıklardaki baskı hızıyla baskı sonuçları arasındaki ilgi incelenerek en uygun parametreler belirlenmiştir. Yazdırma sıcaklığı olarak belirlenen 220oC sıcaklık ve 30mm/s de en yüksek çekme değerlerinin elde edildiği ve numunenin gerçek renginde önemli bir değişim olmadığı tespit edilmiştir. 

___

  • [1]. Ning, F., Cong, W., Qiu, J., Wei, J., & Wang, S., Additive manufacturing of carbon fiber reinforced thermoplastic composites using fused deposition modeling, Composites Part B: Engineering, vol. 80, 2015, pp. 369-378.
  • [2]. Kitson PJ, Rosnes MH, Sans V, et al. Configurable 3D-Printed millifluidic and microfluidic ‘lab on a chip’reactionware devices. Lab on a Chip. Vol.12, 32, pp. 67–71.
  • [3]. Kitson PJ, Symes MD, Dragone V, et al. Combining 3D printing and liquid handling to produce user-friendly reactionware for chemical synthesis and purification, Chem Sci.;4:30, 2013, pp.99–103.
  • [4]. Mohamed, O. A., Masood, S. H., & Bhowmik, J. L., Experimental investigation of time-dependent mechanical properties of PC-ABS prototypes processed by FDM additive manufacturing process, Materials Letters, vol. 193, 2017, pp. 58-62.
  • [5]. Çantı E., Aydın M., Yıldırım F.,Journal of polytechnic, Production and Characterization of Composite Filaments for 3D Printing DOI: 10.2339/politeknik.389591.
  • [6]. Nuñez, P. J., Rivas, A., García-Plaza, E., Beamud, E., & Sanz-Lobera, A., Dimensional and surface texture characterization in Fused Deposition Modelling (FDM) with ABS plus, Procedia Engineering, vol. 132, 2015, pp.856-863.
  • [7]. Çantı E., Aydın M. "Effects of micro particle reinforcement on mechanical properties of 3D printed parts", Rapid Prototyping Journal, Vol. 24 Issue: 1, 2018, pp.171-176, Doi.org/10.1108/RPJ-06-2016-0095.
  • [8]. https://3dprinting.com/materials/). 12-12-2017.
  • [9]. Güldaş, A., Çankaya, A., Güllü, A., & Metin, G.Ü.R.Ü., Çinko Borat Katkılı Polipropilen’in Reolojik Özelliklerinin Belirlenmesi, Gazi Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi, vol. 29, no 2, 2014. Pp. 227-234.
  • [10]. https://www.polymersolutions.com/blog/plastic-in-3d-printing/12-02-2018.
  • [11]. https://www.3bfab.com/bilgi - merkezi/konu/abs-ile-pla-filamentleri-karsilastirmasi/13-02-2018.
  • [12]. Symes MD, Kitson PJ, Yan J, et al. Integrated 3D-printed reactionware for chemical synthesis and analysis. Nat Chem. 2012;4:349.
  • [13]. Matthew R. Skorski, Jake M. Esenther, Zeeshan Ahmed, Abigail E. Miller &Matthew R. Hartings ”The chemical, mechanical, and physical properties of 3D printed materials composed of TiO2-ABS nanocomposites” Science and Technology of Advanced Materials, vol . 17, no 1, 2016, pp 89–97.
  • [14]. Hill, N., & Haghi, M., “Deposition Direction-Dependent Failure Criteria For Fused Deposition Modeling Polycarbonate”, Rapid Prototyping Journal, 20(3), 2014, pp. 221-227.
  • [15]. Chatterjee, A., & Deopura, B. L., “High modulus and high strength PP nanocomposite filament”, Composites Part A: Applied Science and Manufacturing, 37(5), 2006, pp 813-817.
  • [16]. http://mepteknik.com/bg/assets/images/kkilavuz/RENK%20OLCUM%20CIHAZI%20KULLANMA%20KILAVUZU.pdf/24-02-2018.
  • [17]. Weng, Z., Wang, J., Senthil, T., & Wu, L., “Mechanical and Thermal Properties of ABS/Montmorillonite Nanocomposites for Fused Deposition Modeling 3D Printing”, Materials & Design,102, 2016, 276-283.
  • [18]. Dawoud, M., Taha, I., & Ebeid, S. J., “Mechanical Behaviour of ABS: An Experimental Study Using FDM and Injection Moulding Techniques”, Journal of Manufacturing Processes, 21, 2016, pp 39-45.
  • [19]. Sun, Q., Rizvi, G. M., Bellehumeur, C. T., & Gu, P., “Effect of Processing Conditions on the Bonding Quality of FDM Polymer Filaments”, Rapid Prototyping Journal, 14(2), 2008, pp 72-80.
  • [20]. Faes, M., Ferraris, E., & Moens, D., “Influence of Inter-Layer Cooling Time on the Quasi-Static Properties of ABS Components Produced via Fused Deposition Modelling”, Procedia CIRP, 42, 2016, pp 748-753.
  • [21]. Dul, S., Fambri, L., & Pegoretti, A., “Fused Deposition Modelling with ABS–Graphene Nanocomposites”, Composites Part A: Applied Science and Manufacturing, 85, 2016, pp 181-191.
International Journal of 3D Printing Technologies and Digital Industry-Cover
  • ISSN: 2602-3350
  • Yayın Aralığı: Yılda 3 Sayı
  • Başlangıç: 2017
  • Yayıncı: KERİM ÇETİNKAYA