OUTER SHELL FLEXIBILITY IN KINETIC ARCHITECTURAL DESIGN AND UTILIZATION OF INTEGRATED SYSTEMS

Today, developing technology and globalization change the cultures, lifestyles, and needs of societies. This change also impacts the expectations from architectural spaces. Spaces designed to perform a predetermined function may be insufficient to meet the changing needs over time. The aim of this study is to show the flexibility that the movable structural elements bring to the space. In this context, we propose integrating movable inner and outer shell structural elements to achieve specific functionality and meet the various functional capacity needs. In this study, a sample design was visualized to demonstrate the use of integrated kinetic building elements and was discussed its applicability with existing technologies and the advantages that it can provide. As a result, it was observed that kinetic building elements practically provide spatial flexibility and functional diversity in architectural design. In addition, the visuals show that the system is practical, applicable and efficient. Kinetic and flexible space design can be evaluated in “Generative and Parametric design” by means of to obtain variable solutions and functional sustainability according to different functional expectations from design.

___

  • 1. Fox, M. ve Kemp, M., “Interactive Architecture”, Prinston Architectural Press, New York, USA. 2009.
  • 2. Beyazıt, N., “Konut Araçları Açısından Ele Alınan Sistematik Bir Tasarlama Yönteminin Geliştirilmesi”, İstanbul: İstanbul Teknik Üniversitesi Mimarlık Fakültesi, Page 8, 1969.
  • 3. Korkmaz, K., “Kinetik bir mimarlığa doğru”, Ege Mimarlık, Vol. 1, Issue 37, Pages 8-11, 2001.
  • 4. Internet: Türk Dil Kurumu Sözlüğü, “Güncel Türkçe Sözlük”, https://sozluk.gov.tr/, September 27, 2021.
  • 5. Kronenburg, R., “Houses In Motion, The Genesis, History and Development of the Portable Building”, Page 52, Second Edition, Wiley Academy, Great Britain, 2002.
  • 6. De jong, S., “The Companions to the History of Architecture”, Edited by David Leatherbarrow and Alexander Eisenschmidt, Volume IV, Twentieth-Century Architecture. Published by John Wiley & Sons, Inc., Chichester, West Sussex, 2017.
  • 7. Korkmaz, K., “Kinetik Mimarlık Üzerine”, Arredamento Mimarlık, Issue 3, Pages 64-69, 2009.
  • 8. Aisslinger, W., “Studio Aisslinger, Loftcube”. Detail, Vol. 44, Issue 12, Pages 1442-1443, Dec., 2004.
  • 9. Yıldız, A. E., “Mobile Structures of Santiago Calatrava: Other Ways of Producing Architecture”, M.Sc. thesis, Middle East Technical University, Ankara, 2007.
  • 10. Gantes, C. J., “Deployable Structures Analysis and Design”, Page 13, Wit Pres, Southampton, 2001.
  • 11. Internet: Honoring Architecture’s Digital Pioneers, https://www.archdaily.com/429862/ honoring-architecture-s-digital-pioneers_hoberman-jpg, September 27, 2021.
  • 12. Hertel, H., “Structure, Form, Movement”, Page 101, Reinhold Publishing Corporation, New York, 1966.
  • 13. Fisher, D., “Rotating Tower Dubai”, CTBUH 8th World Congress, Page 2, Dubai, 2008.
  • 14. MEGEP, “Mekanizma Tekniği-4 Endüstriyel Otomasyon Teknolojileri”, Page 37, T.C. Milli Eğitim Bakanlığı, Ankara, 2007.
  • 15. Internet: Dezeen Awards 2020, Online: https://www.dezeen.com/2009/01/19/sliding-house-by-drmm-2/ September 27, 2021.
  • 16. Altun, T. D. A., “Geleceğin Mimarlığı: Bilimsel-Teknolojik Değişimlerin Mimarlığa Etkileri”, Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen ve Mühendislik Dergisi, Vol. 9, Issue 1, Pages 83-88, 2007.
  • 17. Bernardi, M., Bley, H. and Schmitt, B. “New approaches for developing mechatronical products in multidisciplinary teamwork”, Paper presented The 35th CIRP-International Seminar on Manufacturing Systems, Pages 13-15, 2002.
  • 18. İnternet: https://www.gettyimages.co.uk/photos/bill-gates-house, September 27, 2021.
  • 19. Seçer Karıptaş, F., Güney Karadişoğulları, Ö., “Akıllı ve Sürdürülebilir Binalar”, Çatı ve Cephe, Cilt: 9, Sayı 55, Pages 76-79, 2015.
  • 20. H. Andrä, R. Fink, “Renewing the Reichstag”, Structural engineering international, Vol.7, Issue 4, Pages 245-248, 1997.
  • 21. İnternet: waagner biro, https://wb-sg.com/projects/reichstagdome/, September 27, 2021.
  • 22. Sönmez, B., Çakır, G., “Çevresel, Sosyal ve Ekonomik Bağlamda Akıllı Cephe Sistemlerinin Sürdürülebilir Kalkınmaya Etkileri”, Haliç Üniversitesi Fen Bilimleri Dergisi, İstanbul, Türkiye, Cilt:1, Sayı 1, Sayfa 63-98, 2018.
  • 23. Boake, T., M., “Hot climate double facades: Avoiding solar gain”, Facade Tectonics. Vol. 14, Pages 2–24, 2014.
  • 24. Attia S, Bashandy H., “Evaluation of adaptive facades: The case study of AGC headquarter in Belgium”. In: Belis J,Louter C, eds. Challenging Glass 5. Conference on Architectural and Structural Applications of Glass. Ghent, Belgium: Ghent University, 2016.
  • 25. Wood, A., Best Tall Buildings: The 2010 CTBUH Reference Guide, New York, NY: Routledge, 2013.
  • 26. İslamoğlu, Ö., Usta, G., “Mimari Tasarımda Esneklik Yaklaşımlarına Kuramsal Bir Bakış”, The Turkish Online Journal of Design, Art and Communication - TOJDAC, Vol. 8, Issue 4, Pages 673-683, 2018.
  • 27. Norberg-Schulz, C., Intention in Architecture, Allen and Unwin Ltd., Universitet for laget, Oslo, Pages 103-175, 1966.
  • 28. Ferschin, P., Di Angelo, M., Brunne, G., “Rapid Prototyping for Kinetic Architecture”, Conference: 2015 IEEE 7th International Conference on Cybernetics and Intelligent Systems (CIS) and IEEE Conference on Robotics, Automation and Mechatronics (RAM), July, 2015.