On Invariants ofm-Vector in Lorentzian Geometry

On Invariants ofm-Vector in Lorentzian Geometry

LetGbe the groupM (n, 1)generated by all pseudo-orthogonal transformations and translationsof Lorentzian spaceEn1orG = SM (n, 1)is the subgroup ofM (n, 1)generated by rotations andtranslations ofEn1. We describe the correlations between Gram determinantdetG(x1, . . . , xm)of thesystem{x1, . . . , xm}and the number of linearly independent null vectors in the system{x1, . . . , xm}.Using methods of invariant theory and these results, the system of generators of the polynomialring of allG-invariant polynomial functions of vectorsx, x2, . . . , xminEn1is obtained for groupsG = M (n, 1)andG = SM (n, 1).

___

  • Duggal, Krishan L. and Bejancu, A., Lightlike submanifolds of semi-Riemannian manifolds and applications. Kluwer Academic Publishers, Dordrecht, 1996.
  • Greub, W., Linear Algebra. Springer-Verlag, 1967.
  • Hilbert, D., Theory of algebraic invariants. Cambridge Univ.Press, New York, 1993.
  • Höfer,R., m-point invariants of real geometries. Beitrage Algebra Geom. 40(1999), 261-266.
  • Khadjiev, D. and Göksal, Y.,Applications of hyperbolic numbers to the invariant theory in two-dimensional pseudo-Euclidean space. Adv. Appl. Clifford Algebras, Online First Article (2015),1-24.
  • Misiak, A. and Stasiak, E., Equivariant maps between certain G-spaces with G=O(n-1,1).Mathematica Bohemica 3(2001), 555-560.
  • Naber, G. L., The Geometry of Minkowski spacetime: an introduction to the mathematics of the special theory of relativity. Springer- Verlag, New York, 1992.
  • Ören, ?I., Invariants of points for the orthogonal group O(3, 1). Doctoral thesis, Karadeniz Technical University, 2008.
  • Ören, ?I., Complete system of invariants of subspaces of Lorentzian space. Iran. J. Sci. Technol. Trans. A Sci. (2016),1-22. (in press).
  • Ören, ?I., The equivalence problem for vectors in the two-dimensional Minkowski spacetime and its application to Bézier curves. J. Math. Comput. Sci. 6 (2016), no. 1, 1-21.
  • Stasiak, E., Scalar concomitants of a system of vectors in pseudo-Euclidean geometry of index 1. Publ.Math..Debrecen 57(2000),no. 1-2, 69.
  • Study,E., The first main theorem for orthogonal vector invariants. Ber.Sachs. Akad. 136(1897).
  • Sturmfels, B.,Algorithms in invariant theory. Springer-Verlag, Wien, 2008.
  • Weyl, H., The classical groups:Their invariants and representations. Princeton University Press, Princeton, NJ, 1997.