Integrability for the Derivative Formulas of Rotation Minimizing Frame in Euclidean 3-Space and Its Applications

Integrability for the Derivative Formulas of Rotation Minimizing Frame in Euclidean 3-Space and Its Applications

We analyze integrability for the derivative formulas of the rotation minimizing frame in theEuclidean 3-space from a viewpoint of rotations around axes of the natural coordinate system.We give a theorem that presents only one component of the indirect solution of the rotationminimizing formulas. Using this theorem, we find a lemma which states the necessary conditionfor the indirect solution to be a steady solution. As an application of the lemma, the naturalrepresentation of the position vector field of a smooth curve whose the rotation minimizing vectorfield (or the Darboux vector field) makes a constant angle with a fixed straight line in space isobtained. Also, we realize that general helices using the position vector field consist of slant helicesand Darboux helices in the sense of Bishop.

___

  • [1] Ali, A.T., Turgut, M.: Position vector of a time-like slant helix in Minkowski 3-space. J. Math. Analysis and Appl. 365(2), 559-569 (2010).
  • [2] Ali, A.T.: Position vectors of slant helices in Euclidean 3-space. J. Egyptian Math. Soc. 20(1), 1-6 (2012).
  • [3] Ali, A.T.: Position vectors of general helices in Euclidean 3-space. Bull. Math. Anal. Appl. 3(2), 198-205 (2010).
  • [4] Ali, A.T., Turgut, M.: Position vectors of timelike general helices in Minkowski 3-space. Glo. J. Adv. Res. Class. Mod. Geom. 2(1), 2-10 (2013).
  • [5] Ali, A.T.: Position vectors of spacelike general helices in Minkowski 3-space. Nonlinear Analysis: Theory, Methods and Applications. 73(4), 1118-1126 (2010).
  • [6] Ali, A.T.: Position vectors of curves in the Galilean space G3. Matematicki Vesnik. 64(3), 200-210 (2012).
  • [7] Bishop, R.L.: There is more than one way to frame a curve. The American Mathematical Monthly. 82(3), 246-251 (1975).
  • [8] Bükcü B., Karacan, M.K.: The slant helices according to Bishop frame. I. J. Computational and Math. Sci. 3(2), 67-70 (2009).
  • [9] Carmo, M.D.: Differential Geometry of Curves and Surfaces. Prentice–Hall. New Jersey (1976).
  • [10] Choi, J.H., Kim, Y.H.: Associated curves of a frenet curve and their applications. Applied Mathematics and Computation, 218(18), 9116-9124 (2012).
  • [11] Kızıltu ˘ g, S., Önder, M.: Associated curves of frenet curves in three dimensional compact lie group. Miskolc Mathematical Notes. 16(2), 953-694 (2015).
  • [12] Kim, Y.H., Choi J.H., Ali, A.T.: Some associated curves of frenet non-lightlike curves in E31 . J. Math. Analy. Appl. 394(2), 712-723 (2012).
  • [13] Lucas, P., Ortega-Yagues, J.A.: Slant helices in the euclidean 3-space revisited. Bull. Belgian Math. Soc. Simon Stevin. 23(1), 133-150 (2016).
  • [14] Macit, N., Akbıyık, M., Yüce, S.: Some new associated curves of an admissible frenet curve in 3-dimensional and 4-dimensional Galilean spaces. Romanian J. Math. Computer Sci. 7(2), 110-122 (2017).
  • [15] Mak, M., Altınba¸s, H.: Some special associated curves of non-degenerate curve in anti de sitter 3-space. Math. Sci. Appl. E-Notes. 5(2), 89-97 (2017).
  • [16] Öztekin, H., Tatlıpınar, S.: Determination of the position vectors of curves from intrinsic equations in G3.Walailak J. Sci. Tech. 11(12), 1011-1018 (2014).
  • [17] Reich, K.: Die geschichte der differential geometrie von gauss bis Riemann. Archive for History of Exact Sciences. 11(4), 273-376 (1973).
  • [18] Savcı, U.Z., Yılmaz, S., Ma˘gden, A.: Position vector of some special curves in Galilean 3-spaces G3. Glo. J. Adv. Res. Class. Mod. Geom. 3(1), 7-11 (2014).