A Poncelet Criterion for Special Pairs of Conics in PG(2; pm)

A Poncelet Criterion for Special Pairs of Conics in PG(2; pm)

We study Poncelet’s Theorem in finite projective planes over the field GF(q), q = pm for p anodd prime and m 1, for a particular pencil of conics. We investigate whether we can findpolygons with n sides which are inscribed in one conic and circumscribed around the other, socalledPoncelet polygons. By using suitable elements of the dihedral group for these pairs, weprove that the length n of such Poncelet polygons is independent of the starting point. In thissense Poncelet’s Theorem is valid. By using Euler’s divisor sum formula for the totient functionwe determine the number of conic pairs which carry Poncelet polygons of length n. Moreover, weintroduce polynomials whose zeros in GF(q) yield information about the relation of a given pairof conics: In particular, we can decide for a given integer n, whether and how we can find Ponceletn-gons for pairs of conics in the projective plane PG(2; q).

___

  • [1] Abatangelo, V., Fisher, J. C., Korchmáros, G., Larato, B.: On the mutual position of two irreducible conics in PG(2; q), q odd. Adv. Geom. 11 (4), 603–614 (2011).
  • [2] Berger, M.: Geometry II, Universitext. Springer-Verlag, Berlin (1987).
  • [3] Bos, H. J. M., Kers, C., Oort, F., Raven, D.W.: Poncelet’s closure theorem. Exposition. Math. 5 (4), 289–364 (1987).
  • [4] Cayley, A.: Developments on the porism of the in-and-circumscribed polygon. Philosophical magazine. 7 (4), 289–364 (1854).
  • [5] Dragovi´c, V., Radnovi´c, M.: Poncelet porisms and beyond. Frontiers in Mathematics. Birkhäuser/Springer Basel AG, Basel (2011).
  • [6] Griffiths, P., Harris, J.: On Cayley’s explicit solution to Poncelet’s porism. Enseign. Math. 24 (1–2), 31–40 (1978).
  • [7] Halbeisen, L., Hungerbühler, N.: A Simple Proof of Poncelet’s Theorem. Amer. Math. Monthly. 122 (6), 603–614 (2015).
  • [8] Hardy, G. H., Wright, E. M.: An introduction to the theory of numbers. Oxford University Press, Oxford (2008).
  • [9] Hirschfeld, J.W. P.: Projective geometries over finite fields. Oxford Mathematical Monographs. The Clarendon Press, Oxford University Press, New York (1998).
  • [10] Hungerbühler, N., Kusejko, K.: Poncelet’s Theorem in the four non-isomorphic finite projective planes of order 9. Ars Combin. 140, 21–44 (2018).
  • [11] Korchmáros, G., Sz˝onyi, T.: Affinely regular polygons in an affine plane. Contrib. Discrete Math. 3 (1), 20–38 (2008).
  • [12] Kusejko, K.: Simultaneous diagonalization of conics in PG(2; q). Des. Codes Cryprogr. 79 (3), 565–581 (2016).
  • [13] Luisi, G.: On a theorem of Poncelet. Atti Sem. Mat. Fis. Univ. Modena. 31 (2), 341–347 (1984).
  • [14] Poncelet, J.-V.: Traité des propriétés projectives des figures. Tome II. Les Grands Classiques Gauthier-Villars. Reprint of the second (1866) edition. Éditions Jacques Gabay, Sceaux (1995).