A Note on Yamabe Solitons on 3-dimensional Almost Kenmotsu Manifolds with $\: \textbf{Q}\phi=\phi \textbf{Q}$
A Note on Yamabe Solitons on 3-dimensional Almost Kenmotsu Manifolds with $\: \textbf{Q}\phi=\phi \textbf{Q}$
In the present paper, we prove that if the metric of a three dimensional almost Kenmotsu manifold with $\textbf{Q}\phi=\phi \textbf{Q}$ whose scalar curvature remains invariant under the chracterstic vector field $\zeta$, admits a non-trivial Yamabe solitons, then the manifold is of constant sectional curvature or the manifold is Ricci simple.
___
- [1] Blair, D. E.: Contact manifolds in Reimannian geometry, Lecture notes in Math. 509, Springer-verlag., 1976.
- [2] Blaga, A. M.: Some geometrical aspects of Einstein, Ricci and Yamabe solitons, J. Geom. Symmetry Phys., 52 (2019), 17-26.
- [3] Chen, B. Y., Deshmukh, S.: Yamabe and quasi Yamabe solitons on Euclidean submanifolds, Mediter. J. Math., 15 (2018) article 194.
- [4] Chen, B. Y., Deshmukh, S.: A note on Yamabe solitons, Balkan J. Geom. and its Applications, 23 (2018), 37-43.
- [5] Calvaruso, G., Zaeim, A.: A complete classification of Ricci and Yamabe solitons of non-reductive homogeneous 4-spaces, J. Geom. Phys., 80 (2014),
15-25.
- [6] De, U. C., Mandal, K.: On a type of almost Kenmotsu manifolds with nullity distribution, Arab Journal of Mathematical Sciences, doi. org/
10.2016/j.ajmsc.2016.04.001.
- [7] De, U. C., Mandal, K.: On ϕ-Ricci recurrent almost Kenmotsu manifolds with nullity distribution, International Electronic Journal of Geomatry,
9(2016), 70-79.
- [8] Dileo, G., Pastore, A. M.: Almost Kenmotsu manifolds and nullity distributions, J. Geom. 93(2009), 46-61.
- [9] Dileo, G., Pastore, A. M.: Almost Kenmotsu manifolds and local symmetry, Bull. Belg. Math. Soc. Simon Stevin, 14(2007), 343-354.
- [10] Deszcz. R., Hotlos, M.: On some pseudosymmetry type curvature condition, Tsukuba J. Math., 27 (2003), 13-30.
- [11] Hamilton, R. S.: The Ricci flow on surfaces, Contemp. Math.71(1988), 237-261.
- [12] Janssens, D., Vanhecke, L.: Almost contact structures and curvature tensors, Kodai Math J., 4(1981), 1-27.
- [13] Kenmotsu, K.: A class of almost contact Riemannian manifolds, Tohoku Math. J. 24(1972), 93-103.
- [14] Sharma, R.: A 3-dimensional Sasakian metric as a Yamabe solitons, Int. J. Geom. Methods Mod. Phys., 9 (2012), 1220003.
- [15] Suh, Y. J., De, U. C.: Yamabe solitons and Ricci solitons on almost Co-Kahler manifolds, Canad. Math. Bull., 62 (2019), 653-661.
- [16] Wang, Y.: Yamabe solitons in three dimensional Kenmotsu manifolds, Bull. Belg. Math. Soc. Simon Stevin, 23(2016), 345 − 355.
- [17] Wang, Y., Liu, X.: Ricci solitons on three-dimensional η-Einstein almost Kenmotsu manifolds, Taiwanese J. of Math., 19(2015), 91-100.
- [18] Wang, Y., Liu, X.: On ϕ-recurrent almost Kenmotsu manifolds, Kuwait. J. Sci., 42(2015), 65-77.
- [19] Wang, Y.: Almost Kenmotsu (k, µ)′- manifolds with Yamabe solitons, Rev. R. Acad. Cienc. Exactas Fis. Nat. Ser. A Mat. RACSAM, 115(2021),
14:8 pp.
- [20] Wang, Y.: Almost Kenmotsu (k, µ)′- manifolds of dimension three and conformal vector fields, Int. J. Geom. Methods Mod. Phys., 19(2022),
22500054:9 pp.
- [21] Wang, Y., Liu, X.: On the classification of almost Kenmotsu manifolds of dimension 3, Hindawi Publishing corporation, 2013, 6 pages.
- [22] Yano, K., Kon, M.: Structures on manifolds. Vol 40, World Scientific Press, 1989.