Surfaces With Constant Mean Curvature In Euclidean Space

___

  • [1] Alexandrov, A.D.: Uniqueness theorems for surfaces in the large, V. Vestnik Leningrad Univ., 13, No. 19, A.M.S. (Series 2), 21 (1958), 412–416.
  • [2] Al´ıas, L.J., Lo´pez, R., Palmer, B.: Stable constant mean curvature surfaces with circular boundary, Proc. A.M.S. 127 (1999), 1195–1200.
  • [3] Barbosa, J. L.: Constant mean curvature surfaces bounded by a planar curve, Matematica Contemporanea, 1 (1991), 3–15.
  • [4] Brito, F., Earp, R.: Geometric configurations of constant mean curvature surfaces with planar boundary, An. Acad. Bras. Ci. 63 (1991), 5–19.
  • [5] Brito, F., Earp, R., Meeks III, W. H., Rosenberg, H.: Structure theorems for constant mean curvature surfaces bounded by a planar curve, Indiana Univ. Math. J. 40 (1991), 333–343.
  • [6] Eells, J.: The surfaces of delaunay, Math. Intelligencer, 9 (1987), 53–57.
  • [7] de Gennes P. G., Brochard-Wyart F., Qu´er´e D.: Capillarity and wetting phenomena: drops, bubbles, pearls, waves, Springer Verlag, New York, 2004.
  • [8] Gilbarg, D., Trudinger, N. S.: Elliptic Partial Differential Equations of Second Order, 2nd edition, Springer Verlag, Berlin, 1983.
  • [9] Heinz, H.: On the nonexistence of a surface of constant mean curvature with finite area and prescribed rectificable boundary, Arch. Rat. Mec. Anal. 35 (1969), 249–252.
  • [10] Hildebrandt, S.: On the Plateau problem for surfaces of constant mean curvature, Comm. Pure Appl. Math. 23 (1970), 97–114.
  • [11] Hopf, H.: Differential Geometry in the Large, Lecture Notes in Mathematics, 1000, Springer- Verlag, Berlin, 1983.
  • [12] Isenberg, C.: The Science of Soap Films and Soap Bubbles, Dover, New York, 1992.
  • [13] Kapouleas, N.: Compact constant mean curvature surfaces in Euclidean three-space, J. Diff. Geom. 33 (1991), 683–715.
  • [14] Kenmotsu, K.: Surfaces with constant mean curvature, American Math. Soc., Providence, 2003.
  • [15] Koiso, M.: Symmetry of hypersurfaces of constant mean curvature with symmetric boundary, Math. Z. 191 (1986), 567–574.
  • [16] Koiso, M.: A generalization of Steiner symmetrization for immersed surfaces and its appli- cations, Manuscripta Math. 87 (1995), 311–325.
  • [17] Koiso, M.: The uniqueness for stable surfaces of constant mean curvature with free boundary, Bull Kyoto Univ Educ Ser B. 94 (1999), 1–7.
  • [18] Liu, H.: Translation surfaces with constant mean curvature in 3-dimensional spaces, J. Geom. 64 (1999), 141–149.
  • [19] L´opez, R.: Surfaces of constant mean curvature bounded by convex curves, Geom. Dedicata 66 (1997), 255–263.
  • [20] L´opez, R. A note on H-surfaces with boundary, J. Geom. 60 (1997), 80–84.
  • [21] L´opez, R.: Constant mean curvature surfaces with boundary in Euclidean three-space, Tsukuba J. Math., 23 (1999), 27–36.
  • [22] L´opez, R.: Constant mean curvature graphs on unbounded convex domains, J. Diff. Eq., 171 (2001), 54–62.
  • [23] L´opez, R.: Wetting phenomena and constant mean curvature surfaces with boundary, Re- views Math. Physics, 17 (2005), 769–792.
  • [24] L´opez, R.: On uniqueness of graphs with constant mean curvature, J. Math. Kyoto Univ., 46 (2007), 771–787.
  • [25] L´opez, R., Montiel, S.: Constant mean curvature disc with boundary, Proc. Amer. Math. Soc., 123 (1995), 1555–1558.
  • [26] L´opez, R., Montiel, S.: Constant mean curvature surfaces with planar boundary, Duke Math. J., 85 (1996), 583–604.
  • [27] Meeks III, W.: The topology and geometry of embedded surfaces of constant mean curvature, J. Diff. Geom. 30 (1989), 465–503.
  • [28] Oprea, J.: The Mathematics of Soap Films: Explorations with Maple, 2000 American Math. Soc.
  • [29] Osserman, R.: Minimal Surfaces, Dover, 1969.
  • [30] Serrin, J.: On surfaces of constant mean curvature which span a given space curve, Math. Z. 112 (1969), 77–88.
  • [31] Serrin, J.: The problem of Dirichlet for quasilinear elliptics equations with many independent variables, Phil. Trans. Roy. Soc. London A 264 (1969), 413–496.
  • [32] Steffen, K.: Parametric surfaces of prescribed mean curvature, Lectures Note in Math. vol. 1713, 211–265, Springer Verlag, Berlin, 1999.
  • [33] Struwe, M.: Plateau’s Problem and the Calculus of Variations, Mathematical Notes, Prin- centon University Press, Princenton, 1988.
  • [34] Wente, H.C.: Counter example to a conjecture of H. Hopf, Pacific J. Math., 121 (1986), 193–243.