SYMMETRIC TENSOR RANK, CACTUS RANK AND RELATED COMPLEXITY MEASURES FOR HOMOGENEOUS POLYNOMIALS

___

  • [1] Ballico, E., Subsets of the variety X ⊂ Pn evincing the X-rank of a point of Pn, preprint.
  • [2] Ballico, E. and Bernardi, A., Decomposition of homogeneous polynomials with low rank, Math. Z. 271 (2012) 1141–1149.
  • [3] Bernardi, A., Gimigliano, A. and Idà, M., Computing symmetric rank for symmetric tensors, J. Symbolic. Comput. 46 (2011), no. 1, 34–53.
  • [4] Bernardi, A. and Ranestad, K., The cactus rank of cubic forms, J. Symbolic. Comput. 50 (2013) 291–297. DOI: 10.1016/j.jsc.2012.08.001
  • [5] Buczyn´ska, W. and Buczynśki, J., Secant varieties to high degree veronese reembeddings, catalecticant matrices and smoothable Gorenstein schemes. arXiv:1012.3562v4 [math.AG], J. Algebraic Geom. (to appear).
  • [6] Buczynśka, W. and Buczynśki, J., On the difference between the border rank and the smooth- able rank of a polynomial, arXiv:1305.1726.
  • [7] Buczynśki, J., Ginensky, A. and Landsberg, J. M., Determinantal equations for secant vari- eties and the Eisenbud-Koh-Stillman conjecture, J. London Math. Soc. (2) 88 (2013) 1–24.
  • [8] Buczynśki, J. and Landsberg, J. M., Ranks of tensors and a generalization of secant varieties, Linear Algebra Appl. 438 (2013), no. 2, 668–689.
  • [9] Comas, G., and Seiguer, M., On the rank of a binary form, Found. Comp. Math. 11 (2011), no. 1, 65–78.
  • [10] Hartshorne, R., Algebraic Geometry, Springer, Berlin, 1977.
  • [11] Iarrobino, A. and Kanev.,V., Power sums, Gorenstein algebras, and determinantal loci. Lec- ture Notes in Mathematics, vol. 1721, Springer-Verlag, Berlin, 1999, Appendix C by Iarrobino and Steven L. Kleiman.
  • [12] Landsberg, J. M., Tensors: Geometry and Applications, Graduate Studies in Mathematics, Vol. 128, Amer. Math. Soc. Providence, 2012.