Classification of Rectifying Space-Like Submanifolds in Pseudo-Euclidean Spaces

___

  • [1] Cambie, S., Goemans, W. and Van den Bussche, I., Rectifying curves in the n-dimensional Euclidean space. Turkish J. Math., 40 (2016), no.1, 210-223.
  • [2] Chen, B.-Y., Geometry of position functions of Riemannian submanifolds in pseudo-Euclidean space, J. Geom., 74 (2002), 61-77.
  • [3] Chen, B.-Y., When does the position vector of a space curve always lie in its rectifying plane? Amer. Math. Monthly, 110 (2003), no. 2, 147–152.
  • [4] Chen, B.-Y., Constant-ratio space-like submanifolds in pseudo-Euclidean space. Houston J. Math., 29 (2003), no. 2, 281-294. [5] Chen, B.-Y., Riemannian geometry, δ-invariants and applications. World Scientific, Hackensack, NJ, 2011.
  • [6] Chen, B.-Y., Differential geometry of rectifying submanifolds. Int. Electron. J. Geom., 9 (2016), no. 2, 1-8.
  • [7] Chen, B.-Y., Addendum to : Differential geometry of rectifying submanifolds. Int. Electron. J. Geom., 10 (2017), no. 1, 81-82.
  • [8] Chen, B.-Y., Differential geometry of warped product manifolds and submanifolds. World Scientific, Hackensack, NJ, 2017.
  • [9] Chen, B.-Y., Rectifying curves and geodesics on a cone in the Euclidean 3-space. Tamkang J. Math., 48 (2017) (to appear).
  • [10] Chen, B.-Y. and Dillen, F., Rectifying curves as centrodes and extremal curves. Bull. Inst. Math. Acad. Sinica 33 (2005), no. 2, 77-90.
  • [11] Kim, D.-S., Chung, H.-S. and Cho, K.-H., Space curves satisfying τ/κ = as + b. Honam Math. J., 15 (1993), 1-9.
  • [12] Hiepko, S., Eine innere Kennzeichnung der verzerrten Produkte. Math. Ann. , 241 (1979), no. 3, 209-215.
  • [13] Ilarslan, K., Nesovic, E. and Petrovic-Torgasev, M., Some characterizations of rectifying curves in the Minkowski 3-space. Novi Sad J. Math., 33 (2003), no. 2, 23-32.
  • [14] Ilarslan, K. and Nesovic, E., On rectifying curves as centrodes and extremal curves in the Minkowski 3-space. Novi Sad J. Math. 37 (2007), no. 1, 53-64.
  • [15] Ilarslan, K. and Nesovic, E., Some relations between normal and rectifying curves in Minkowski space-time. Int. Electron. J. Geom. 7 (2014), no. 1, 26-35.
  • [16] O’Neill, B., Semi-Riemannian geometry with applications to relativity. Academic Press, New York, 1983.