A Characterization of Cylinders and an Estimate for Mean Curvature of Convex Euclidean Hypersurfaces Satisfying a Cylindrical Condition
We show that a curvature condition on the Gauss-Kronecker curvature and scalar curvature of a
___
- [1] Bonnet, O., Sur quelque propriétés des lignes géodésiques. Comptes rendus de l’Academie des Sciences 11 (1855), 1311–1313.
- [2] Brubaker, N.D. and Suceava, B.D., A Geometric Interpretation of Cauchy-Schwarz Inequality in Terms of Casorati Curvature. Intern. Elec.
J. Geom. 11 (2018), 48–51.
- [3] Brubaker, N.D., Camero, J., Rocha Rocha O., Soto, R. and Suceav˘a, B.D., A Curvature Invariant Inspired by Leonhard Euler’s Inequality
R ≥ 2r. Forum Geometricorum 18 (2018) 119–127.
- [4] Brzycki, B., Giesler, M.D., Gomez, K., Odom L.H. and Suceav˘a, B.D., A ladder of curvatures for hypersurfaces in the Euclidean ambient
space. Houston J. Math. 40 (2014) 1347–1356.
- [5] Calabi, E., On Ricci curvatures and geodesics. Duke Math. J. 34 (1967), 667–676.
- [6] Chen, B.-Y., Some pinching and classification theorems for minimal submanifolds. Arch. Math. 60 (1993), 568-578.
- [7] Chen, B.-Y., A Riemannian invariant and its applications to submanifold theory. Results Math. 27 (1995), 17-26.
- [8] Chen, B.-Y., Some new obstructions to minimal and Lagrangian isometric immersions. Japanese J. Math. 26 (2000), 105-127.
- [9] Chen, B.-Y., Pseudo-Riemannian submanifolds, δ-invariants and Applications. World Scientific, 2011.
- [10] Conley, C. T. R., Etnyre, R., Gardener, B., Odom L.H. and Suceava, B.D., New Curvature Inequalities for Hypersurfaces in the Euclidean
Ambient Space. Taiwanese J. Math. 17 (2013), 885–895.
- [11] Dillen, F., Fastenakels, J. and Van der Veken, J., A pinching theorem for the normal scalar curvature of invariant submanifolds. J. Geom.
Phys. 57 (2007), no. 3, 833–840.
- [12] doCarmo, Manfredo P., Riemannian Geometry. Birkhäuser, 1992.
- [13] Galloway, G.J., A Generalization of Myers Theorem and an application to relativistic cosmology. J. Diff. Geom. 14 (1979), 105–116.
- [14] Gauss, C.F. , Disquisitiones circa superficies curvas. Typis Dieterichianis, Goettingen, 1828.
- [15] Germain, S., Mémoire sur la courbure des surfaces. J. Reine Angew. Math. 8 (1832), 280–297.
- [16] Giugiuc, L.M., Problem 11911. American Mathematical Monthly 123 (2016), p. 504.
- [17] Myers, S.B., Riemmannian manifolds with positive curvature. Duke Math. J. 8 (1941), 401–404.
- [18] Suceav˘a, B. D., The spread of the shape operator as conformal invariant. J. Inequal. Pure Appl. Math. 4 (2003), article 74.
- [19] Suceav˘a, B. D., The amalgamatic curvature and the orthocurvatures of three dimensional hypersurfaces in E4. Publicationes Mathematicae
87 (2015), no. 1-2, 35–46.
- [20] Suceav˘a, B.D., A Geometric Interpretation of Curvature Inequalities on Hypersurfaces via Ravi Substitutions in the Euclidean Plane.
Math. Intelligencer 40 (2018), 50–54.
- [21] Suceav˘a, B.D. and Vajiac, M. B. Remarks on Chen’s fundamental inequality with classical curvature invariants in Riemannian spaces. An.
Ştiin¸t. Univ. Al. I. Cuza Ia¸si. Mat. (N.S.) 54 (2008), no. 1, 27–37.