Remarks on Scalar Curvature and Concircular Field Equation

We show that the scalar curvature of a Riemannian manifold $M$ is constant if it satisfies (i) the concircular field equation and $M$ is compact, (ii) the special concircular field equation. Finally, we show that, if a complete connected Riemannian manifold admits a concircular non-isometric vector field leaving the scalar curvature invariant, and the conformal function is special concircular, then the scalar curvature is a constant.

___

  • [1] Castro, I., Montealegre, C. R. and Urbano, F.: Closed conformal vector fields and Lagragian submanifolds. Pacific J. Math. Complex Space Forms. 199, 269-302 (2001).
  • [2] Chen, B.Y.: A simple characterization of generalized Robertason-Walker spacetimes. Gen. Rel. Grav. 46, 1833 (5 pp.) (2014).
  • [3] Chen, B.Y. and Deshmukh, S.: A note on Yamabe solitons. Balkan J. Geom. Applns. 23, 37-43 (2018).
  • [4] Daskalopoulos, P. and Sesum, N.: The classification of locally conformally flat Yamabe solitons. Adv. Math. 240, 346-369 (2013).
  • [5] Deshmukh, S. and Al-Solamy, F.: Conformal gradient vector fields on a compact Riemannian manifold. Colloq. Math. 112, 157-161 (2008).
  • [6] Fialkow, A.: Conformal geodesics. Trans. Amer. Math. Soc. 45, 443-473 (1989).
  • [7] Hamilton, R.S.: The Ricci flow on surfaces, Mathematics and general relativity. Contemp. Math. 71, 237-262 (1988).
  • [8] Obata, M.: Conformal transformations of Riemannian manifolds. J. Differential Geom. 4, 311-333 (1970).
  • [9] Ros, A. and Urbano, F.: Lagrangian submanifolds of Cn with confornal Maslov form and the Whitney sphere. J. Math. Soc. Japan. 50, 203-226 (1998).
  • [10] Tashiro, Y.: Complete Riemannian manifolds and some vector fields. Trans. Amer. Math. Soc. 117, 251-275 (1965).