REPRESENTATIONS OF LIE ALGEBRAS ARISING FROM POLYTOPES

REPRESENTATIONS OF LIE ALGEBRAS ARISING FROM POLYTOPES

We present an extremely elementary construction of the simple Lie algebras over C in all of their minuscule representations, using the vertices of various polytopes. The construction itself requires no complicated combinatorics and essentially no Lie theory other than the definition of a Lie algebra; in fact, the Lie algebras themselves appear as by-products of the construction.

___

  • S.C. Billey and V. Lakshmibai, Singular Loci of Schubert Varieties, Progr. Math. 182, Birkh¨auser, Boston, 2000.
  • R.W. Carter, Lie algebras of finite and affine type, Cambridge University Press, Cambridge, 2005.
  • J.H. Conway and N.J.A. Sloane, The cell structures of certain lattices, in Miscellanea Mathematica (editors P. Hilton, F. Hirzebruch and R. Remmert), Springer-Verlag, (New York, 1991), pp. 71–108.
  • B.N. Cooperstein, A note on the Weyl group of type E7, Europ. J. Combina- torics, 11 (1990), 415–419.
  • H.S.M. Coxeter, Regular Polytopes, Pitman, New York, 1947.
  • P. du Val, On the directrices of a set of points in a plane, Proc. Lond. Math. Soc., (2) 35 (1933), 23–74.
  • R.M. Green, Full heaps and representations of affine Kac–Moody algebras, Int. Electron. J. Algebra, 2 (2007), 138–188.
  • R.M. Green, Full heaps and representations of affine Weyl groups, Int. Elec- tron. J. Algebra, 3 (2008), 1–42.
  • R. Hartshorne, Algebraic Geometry, Springer-Verlag, New York, 1977.
  • J.E. Humphreys, Reflection Groups and Coxeter Groups, Cambridge Univer- sity Press, Cambridge, 1990.
  • V.G. Kac, Infinite dimensional Lie algebras (third edition), Cambridge Uni- versity Press, Cambridge, UK, 1990.
  • M. Kashiwara, On crystal bases of the q-analogue of universal enveloping al- gebras, Duke Math. J., 63 (1991), 465–516.
  • L. Manivel, Configurations of lines and models of Lie algebras, J. Algebra, 304 (2006), 457–486.
  • J.R. Stembridge, Minuscule elements of Weyl groups, J. Algebra, 235 (2001), –743.
  • N.J. Wildberger, A combinatorial construction for simply-laced Lie algebras, Adv. Appl. Math., 30 (2003), 385–396.
  • N.J. Wildberger, A combinatorial construction of G2, J. Lie Theory, 13 (2003), –165. Richard M. Green
  • Department of Mathematics University of Colorado Campus Box 395 Boulder, CO 80309-0395 USA e-mail: rmg@euclid.colorado.edu

___

Bibtex @ { ieja266373, journal = {International Electronic Journal of Algebra}, issn = {1306-6048}, eissn = {1306-6048}, address = {1710 Sokak, No:41, Batikent/Ankara}, publisher = {Abdullah HARMANCI}, year = {2008}, volume = {4}, number = {4}, pages = {27 - 52}, title = {REPRESENTATIONS OF LIE ALGEBRAS ARISING FROM POLYTOPES}, key = {cite}, author = {Green, Richard M.} }
APA Green, R. M. (2008). REPRESENTATIONS OF LIE ALGEBRAS ARISING FROM POLYTOPES . International Electronic Journal of Algebra , 4 (4) , 27-52 .
MLA Green, R. M. "REPRESENTATIONS OF LIE ALGEBRAS ARISING FROM POLYTOPES" . International Electronic Journal of Algebra 4 (2008 ): 27-52 <
Chicago Green, R. M. "REPRESENTATIONS OF LIE ALGEBRAS ARISING FROM POLYTOPES". International Electronic Journal of Algebra 4 (2008 ): 27-52
RIS TY - JOUR T1 - REPRESENTATIONS OF LIE ALGEBRAS ARISING FROM POLYTOPES AU - Richard M.Green Y1 - 2008 PY - 2008 N1 - DO - T2 - International Electronic Journal of Algebra JF - Journal JO - JOR SP - 27 EP - 52 VL - 4 IS - 4 SN - 1306-6048-1306-6048 M3 - UR - Y2 - 2022 ER -
EndNote %0 International Electronic Journal of Algebra REPRESENTATIONS OF LIE ALGEBRAS ARISING FROM POLYTOPES %A Richard M. Green %T REPRESENTATIONS OF LIE ALGEBRAS ARISING FROM POLYTOPES %D 2008 %J International Electronic Journal of Algebra %P 1306-6048-1306-6048 %V 4 %N 4 %R %U
ISNAD Green, Richard M. . "REPRESENTATIONS OF LIE ALGEBRAS ARISING FROM POLYTOPES". International Electronic Journal of Algebra 4 / 4 (Aralık 2008): 27-52 .
AMA Green R. M. REPRESENTATIONS OF LIE ALGEBRAS ARISING FROM POLYTOPES. IEJA. 2008; 4(4): 27-52.
Vancouver Green R. M. REPRESENTATIONS OF LIE ALGEBRAS ARISING FROM POLYTOPES. International Electronic Journal of Algebra. 2008; 4(4): 27-52.
IEEE R. M. Green , "REPRESENTATIONS OF LIE ALGEBRAS ARISING FROM POLYTOPES", , c. 4, sayı. 4, ss. 27-52, Ara. 2008