Bibtex | @ { ieja266440, journal = {International Electronic Journal of Algebra}, issn = {1306-6048}, eissn = {1306-6048}, address = {1710 Sokak, No:41, Batikent/Ankara}, publisher = {Abdullah HARMANCI}, year = {2010}, volume = {8}, number = {8}, pages = {191 - 218}, title = {NON-CANCELLABLE ELEMENTS IN TYPE AFFINE C COXETER GROUPS}, key = {cite}, author = {Ernst, Dana C.} } |
APA | Ernst, D. C. (2010). NON-CANCELLABLE ELEMENTS IN TYPE AFFINE C COXETER GROUPS . International Electronic Journal of Algebra , 8 (8) , 191-218 . |
MLA | Ernst, D. C. "NON-CANCELLABLE ELEMENTS IN TYPE AFFINE C COXETER GROUPS" . International Electronic Journal of Algebra 8 (2010 ): 191-218 < |
Chicago | Ernst, D. C. "NON-CANCELLABLE ELEMENTS IN TYPE AFFINE C COXETER GROUPS". International Electronic Journal of Algebra 8 (2010 ): 191-218 |
RIS | TY - JOUR T1 - NON-CANCELLABLE ELEMENTS IN TYPE AFFINE C COXETER GROUPS AU - Dana C.Ernst Y1 - 2010 PY - 2010 N1 - DO - T2 - International Electronic Journal of Algebra JF - Journal JO - JOR SP - 191 EP - 218 VL - 8 IS - 8 SN - 1306-6048-1306-6048 M3 - UR - Y2 - 2022 ER - |
EndNote | %0 International Electronic Journal of Algebra NON-CANCELLABLE ELEMENTS IN TYPE AFFINE C COXETER GROUPS %A Dana C. Ernst %T NON-CANCELLABLE ELEMENTS IN TYPE AFFINE C COXETER GROUPS %D 2010 %J International Electronic Journal of Algebra %P 1306-6048-1306-6048 %V 8 %N 8 %R %U |
ISNAD | Ernst, Dana C. . "NON-CANCELLABLE ELEMENTS IN TYPE AFFINE C COXETER GROUPS". International Electronic Journal of Algebra 8 / 8 (Aralık 2010): 191-218 . |
AMA | Ernst D. C. NON-CANCELLABLE ELEMENTS IN TYPE AFFINE C COXETER GROUPS. IEJA. 2010; 8(8): 191-218. |
Vancouver | Ernst D. C. NON-CANCELLABLE ELEMENTS IN TYPE AFFINE C COXETER GROUPS. International Electronic Journal of Algebra. 2010; 8(8): 191-218. |
IEEE | D. C. Ernst , "NON-CANCELLABLE ELEMENTS IN TYPE AFFINE C COXETER GROUPS", , c. 8, sayı. 8, ss. 191-218, Ara. 2010 |
HOM-ALTERNATIVE ALGEBRAS AND HOM-JORDAN ALGEBRAS
NON-CANCELLABLE ELEMENTS IN TYPE AFFINE C COXETER GROUPS
ON (σ, τ )-HIGHER DERIVATIONS IN PRIME RINGS
Mohammad Ashraf, Almas Khan, Claus Haetinger
HOM-BIALGEBRAS AND COMODULE HOM-ALGEBRAS
IDEALS AND OVERRINGS OF DIVIDED DOMAINS
PLANARITY OF INTERSECTION GRAPHS OF IDEALS OF RINGS
Sayyed Heidar Jafari, Nader Jafari Rad
WHEN IS THE SET OF INTERMEDIATE RINGS A FINITE BOOLEAN ALGEBRA