ON A LIE ALGEBRA RELATED TO SOME TYPES OF DERIVATIONS AND THEIR DUALS

Let $A$ be an associative algebra over a commutative ring $R$,$\text{BiL}(A)$ the set of $R$-bilinear maps from $A \times A$ to$A$, and arbitrarily elements $x$, $y$ in $A$. Consider thefollowing $R$-modules:\begin{align*}&\Omega(A) = \{(f,\ \alpha)\ \vert \ f \in \text{Hom}_R(A,\ A),\\alpha \in \text{BiL}(A) \}, \\&\text{TDer}(A) = \{(f,\ f',\ f'') \in \text{Hom}_R(A,\ A)^3 \\vert \ f(xy) = f'(x)y + xf''(y)\}.\end{align*}$\text{TDer}(A)$ is called the set of triple derivations of $A$.We define a Lie algebra structure on $\Omega(A)$ and$\text{TDer}(A)$ such that $\varphi_A : \text{TDer}(A) \to\Omega(A)$ is a Lie algebra homomorphism.\parDually, for a coassociative $R$-coalgebra $C$, we define the$R$-modules $\Omega(C)$ and $\text{TCoder}(C)$ which correspond to$\Omega(A)$ and $\text{TDer}(A)$, and show that the similarresults to the case of algebras hold. Moreover, since $C^* =\text{Hom}_R(C,\ R)$ is an associative $R$-algebra, we give thatthere exist anti-Lie algebra homomorphisms $\theta_0 :\text{TCoder}(C) \to \text{TDer}(C^*)$ and $\theta_1 : \Omega(C)\to \Omega(C^*)$ such that the following diagram is commutative :\begin{equation*}\begin{CD} \text{TCoder}(C) @>{\psi_C}>> \Omega(C) \\@VV{\theta_0}V  @VV{\theta_1} V  \\\text{TDer}(C^*) @>{\varphi_{C^*}}>>\Omega(C^*).\end{CD}\end{equation*}

___

  • M. Bresar, On the distance of the composition of two derivations to the gener- alized derivations, Glasgow Math. J., 33(1) (1991), 89-93.
  • M. Bresar, On generalized biderivations and related maps, J. Algebra, 172(3) (1995), 764-786.
  • C. W. Curtis and I. Reiner, Representation Theory of Finite Groups and As- sociative Algebras, Pure and Applied Mathematics, Vol. XI, Interscience Pub- lishers, a division of John Wiley & Sons, New York-London, 1962.
  • Y. Doi, Homological coalgebra, J. Math. Soc. Japan, 33(1) (1981), 31-50.
  • M. Hongan and H. Komatsu, (sigma; tau)-derivations with invertible values, Bull. Inst. Math. Acad. Sinica, 15(4) (1987), 411-415.
  • M. Hongan and H. Komatsu, On the module of differentials of a noncom- mutative algebra and symmetric biderivations of semiprime algebra, Comm. Algebra, 28(2) (2000), 669-692.
  • H. Komatsu, Quasi-separable extensions of noncommutative rings, Comm. Al- gebra, 29(3) (2001), 1011-1019.
  • H. Komatsu and A. Nakajima, Generalized derivations of associative algebras, Quaest. Math., 26(2) (2003), 213-235.
  • H. Komatsu and A. Nakajima, On triple coderivations of corings, Int. Electron. J. Algebra, 17 (2015), 139-153.
  • G. F. Leger and E. M. Luks, Generalized derivations of Lie algebras, J. Algebra, 228(1) (2000), 165-203.
  • A. Nakajima, Coseparable coalgebras and coextensions of coderivations, Math. J. Okayama Univ., 22(2) (1980), 145-149.
  • A. Nakajima, On categorical properties of generalized derivations, Sci. Math., 2(3) (1999), 345-352.
  • A. Nakajima, Generalized Jordan derivations, International Symposium on Ring Theory (Kyongju, 1999), Trends Math., Birkhauser, Boston, MA, (2001), 235-243.
  • A. Nakajima, Note on generalized Jordan derivations associate with Hochschild 2-cocycles of rings, Turkish J. Math., 30(4) (2006), 403-411.
  • A. Nakajima, On generalized coderivations, Int. Electron. J. Algebra, 12 (2012), 37-52.
  • M. E. Sweedler, Right derivations and right differential operators, Pacific J. Math., 86(1) (1980), 327-360.
  • J. Vukman, Symmetric bi-derivations on prime and semi-prime rings, Aequa- tiones Math., 38(2-3) (1989), 245-254.