ON THE CLASSICAL PRIME SPECTRUM OF LATTICE MODULES

Let $M$ be a lattice module over a $C$-lattice $L$. A proper element $P$ of $M$ is said to be classical prime if for

___

  • F. Alarcon, D. D. Anderson and C. Jayaram, Some results on abstract com- mutative ideal theory, Period. Math. Hungar., 30(1) (1995), 1-26.
  • E. A. Al-Khouja, Maximal elements and prime elements in lattice modules, Damascus Univ. J. Basic Sci., 19(2) (2003), 9-21.
  • M. F. Atiyah and I. G. MacDonald, Introduction to Commutative Algebra, Addison-Wesley Publishing Co., Reading, Mass.-London-Don Mills, Ont. 1969.
  • S. Ballal and V. Kharat, Zariski topology on lattice modules, Asian-Eur. J. Math., 8(4) (2015), 1550066 (10 pp).
  • M. Behboodi and M. R. Haddadi, Classical Zariski topology of modules and spectral spaces I, Int. Electron. J. Algebra, 4 (2008), 104-130.
  • M. Behboodi and M. R. Haddadi, Classical Zariski topology of modules and spectral spaces II, Int. Electron. J. Algebra, 4 (2008), 131-148.
  • M. Behboodi and M. J. Noori, Zariski-like topology on the classical prime spectrum of a module, Bull. Iranian Math. Soc., 35(1) (2009), 253-269.
  • N. Bourbaki, Algebre Commutative, Chap 1-2, Hermann, Paris, 1961.
  • N. Bourbaki, Elements of Mathematics, General topology, Part 1, Hermann, Paris; Addison-Wesley Publishing Co., Reading, Mass.-London-Don Mills, Ont. 1966.
  • F. Callialp, G. Ulucak and U. Tekir, On the Zariski topology over an L-module M, Turkish J. Math., 41(2) (2017), 326-336.
  • K. R. Goodearl and R. B. War eld, Jr., An Introduction to Noncommuta- tive Noetherian Rings, Second edition, London Math. Soc. Student Texts, 16, Cambridge Univ. Press, Cambridge, 2004.
  • M. Hochster, Prime ideal structure in commutative rings, Trans. Amer. Math. Soc., 142 (1969), 43-60.
  • J. A. Johnson, A-adic completions of Noetherian lattice modules, Fund. Math., 66 (1970), 347-373.
  • C. P. Lu, The Zariski topology on the prime spectrum of a module, Houston J. Math., 25(3) (1999), 417-432.
  • C. S. Manjarekar and A. V. Bingi, Absorbing elements in lattice modules, Int. Electron. J. Algebra, 19 (2016), 58-76.
  • J. R. Munkres, Topology: a First Course, Prentice-Hall, Inc. Eglewood Cli s, New Jersey, 1975.
  • N. Phadatare, S. Ballal and V. Kharat, On the second spectrum of lattice modules, Discuss. Math. Gen. Algebra Appl., 37(1) (2017), 59-74.
  • N. Phadatare and V. Kharat, On the second radical elements of lattice modules, Tbilisi Math. J., 11(4) (2018), 165-173.
  • N. Phadatare, V. Kharat and S. Ballal, On the maximal spectrum of lattice modules, Southeast Asian Bull. Math., Accepted.
  • N. K. Thakare and C. S. Manjarekar, Abstract spectral theory: Multiplicative lattices in which every character is contained in a unique maximal character, Algebra and its applications (New Delhi, 1981), Lecture Notes in Pure and Appl. Math., 91, Dekker, New York, (1984), 265-276.
  • N. K. Thakare, C. S. Manjarekar and S. Maeda, Abstract spectral theory II: minimal characters and minimal spectrums of multiplicative lattices, Acta Sci. Math. (Szeged), 52(1-2) (1988), 53-67.