LATTICE DECOMPOSITION OF MODULES

The first aim of this work is to characterize when the lattice of all submodules of a module is a direct product of two lattices. In particular, which decompositions of a module $M$ produce these decompositions: the \emph{lattice decompositions}. In a first \textit{\'{e}tage} this can be done using endomorphisms of $M$, which produce a decomposition of the ring $\End_R(M)$ as a product of rings, i.e., they are central idempotent endomorphisms. But since not every central idempotent endomorphism produces a lattice decomposition, the classical theory is not of application. In a second step we characterize when a particular module $M$ has a lattice decomposition; this can be done, in the commutative case in a simple way using the support, $\Supp(M)$, of $M$; but, in general, it is not so easy. Once we know when a module decomposes, we look for characterizing its decompositions. We show that a good framework for this study, and its generalizations, could be provided by the category $\sigma[M]$, the smallest Grothendieck subcategory of $\rMod{R}$ containing $M$.

___

  • A. Barnard, Distributive extensions of modules, J. Algebra, 70(2) (1981), 303-315.
  • P. M. Cohn, Free Rings and Their Relations, Second Edition, London Mathematical Society Monographs, 19, Academic Press, Inc., London, 1985.
  • T. M. K. Davison, Distributive homomorphisms of rings and modules, J. Reine Angew. Math., 271 (1974), 28-34.
  • J. M. Garcia, P. Jara and L. M. Merino, Decomposition of comodules, Comm. Algebra, 27(4) (1999), 1797-1805.
  • G. Gratzer, General Lattice Theory, Birkhauser Verlag, Basel-Stuttgart, 1978.
  • C. U. Jensen, Arithmetical rings, Acta Math. Acad. Sci. Hungar., 17 (1966), 115-123.
  • S. Rajaee, Multiplication modules on arithmetical rings, Int. J. Algebra, 7 (2013), 825-828.
  • B. Stenstrom, Rings of Quotients, Springer-Verlag, Berlin, 1975.
  • W. Stephenson, Modules whose lattice of submodules is distributive, Proc. London Math. Soc., 28(3) (1974), 291-310.
  • A. A. Tuganbaev, Distributive extensions of modules, J. Math. Sci., 149(3) (2008), 1279-1285.
  • N. Vanaja, All finitely generated M-subgenerated modules are extending, Comm. Algebra, 24(2) (1996), 543-572.
  • R. Wisbauer, Grundlagen der Modul- und Ringtheorie, Verlag Reinhard Fischer, Munich, 1988.
  • R. Wisbauer, Decompositions of modules and comodules, Algebra and its Applications (Athens, OH, 1999), Contemp. Math., Amer. Math. Soc., Providence, RI, 259 (2000), 547-561.