A CASIMIR ELEMENT INEXPRESSIBLE AS A LIE POLYNOMIAL

Let $q$ be a scalar that is not a root of unity. We show that any nonzero polynomial in the Casimir element of the Fairlie-Odesskii algebra $U_q'(\mathfrak{so}_3)$ cannot be expressed in terms of only Lie algebra operations performed on the generators $I_1,I_2,I_3$ in the usual presentation of $U_q'(\mathfrak{so}_3)$. Hence, the vector space sum of the center of $U_q'(\mathfrak{so}_3)$ and the Lie subalgebra of $U_q'(\mathfrak{so}_3)$ generated by $I_1,I_2,I_3$ is direct.

___

  • G. Bergman,The diamond lemma for ring theory, Adv. in Math., 29(2) (1978), 178-218.
  • R. Cantuba, A Lie algebra related to the universal Askey-Wilson algebra, Matimyas Matematika, 38(2) (2015), 51-75.
  • R. Cantuba, Lie polynomials in $q$-deformed Heisenberg algebras, J. Algebra, 522 (2019), 101-123.
  • R. Cantuba, Compactness property of Lie polynomials in the creation and annihilation operators of the $q$-oscillator, Lett. Math. Phys., 110(10) (2020), 2639-2657.
  • R. Cantuba and M. Merciales, An extension of a $q$-deformed Heisenberg algebra and its Lie polynomials, Expo. Math., (2020), https://doi.org/10.1016/j.exmath.2019.12.001.
  • R. Cantuba and S. Silvestrov, Torsion-type $q$-deformed Heisenberg algebra and its Lie polynomials, In: S. Silvestrov, A. Malyarenko, M. Rancic (eds), Algebraic Structures and Applications, SPAS 2017, Springer Proceedings in Mathematics & Statistics, vol 317, Springer, Cham., (2020), 575-592.
  • R. Cantuba and S. Silvestrov, Lie polynomial characterization problems, In: S. Silvestrov, A. Malyarenko, M. Rancic (eds), Algebraic Structures and Applications, SPAS 2017, Springer Proceedings in Mathematics & Statistics, 317, Springer, Cham., (2020), 593-601.
  • L. Chekhov and V. Fock, Observables in 3D gravity and geodesic algebras, Czechoslovak J. Phys., 50(11) (2000), 1201-1208.
  • D. Fairlie, Quantum deformations of $SU(2)$, J. Phys. A., 23(5) (1990), L183-L187.
  • M. Havlicek, U. Klimyk and S. Posta, Representations of the cyclically symmetric q-deformed algebra $so_{q}(3)$, J. Math. Phys., 40(4) (1999), 2135-2161.
  • M. Havlicek and S. Posta, On the classification of irreducible finite-dimensional representations of U'q (so3), J. Math. Phys., 42(1) (2001), 472-500.
  • M. Havlicek and S. Posta, Center of quantum algebra U'q (so3), J. Math. Phys., 52(4) (2011), 943521 (15 pp).
  • L. Hellstrom and S. Silvestrov, Commuting elements in $q$-deformed Heisenberg algebras, World Scient Publ Co., River Edge, NJ, 2000.
  • L. Hellstrom and S. Silvestrov, Two-sided ideals in $q$-deformed Heisenberg algebras, Expo. Math., 23(2) (2005), 99-125.
  • N. Iorgov, On the center of the $q$-deformed algebra U'q (so3) related to quantum gravity at $q$ a root of $1$, Proceedings of Institute of Mathematics of NAS of Ukraine, 43(2) (2002), 449-455.
  • T. Ito, P. Terwilliger and C. Weng, The quantum algebra Uq (sl2) and its equitable presentation, J. Algebra, 298(1) (2006), 284-301.
  • A. Odesskii, An analog of the Sklyanin algebra, Funct. Anal. Appl., 20 (1986), 152-154.
  • P. Terwilliger, The universal Askey-Wilson algebra, SIGMA Symmetry Integrability Geom. Methods Appl., 7 (2011), 069 (24 pp).
  • A. Zhedanov, "Hidden symmetry" of the Askey-Wilson polynomials, Theoret. and Math. Phys., 89(2) (1991), 1146-1157.