SAĞLIK ALANINDA KULLANILAN AKILLI POLİMERLER

    Polimerler, tekrar eden birimler olarak adlandırılan bir dizi monomer oluşturan uzun zincirli moleküllerdir. Polimerler monomerlerin kimyasal reaksiyonu ile elde edilir. Polimerler doğal (organik) veya sentetik olabilir. Sentetik polimerler ondokuzuncu yüzyılın ortalarından itibaren incelenmeye başlandı. Bugün, polimer endüstrisi hızla gelişmektedir. Bu gelişmelerin sayesinde akıllı polimerler elde edilmiştir. Akıllı materyaller, çevresel faktörlere duyarlı veya sahip oldukları konumu hisseden ve bunlardaki bir değişimle belirlenen yön doğrultusunda fonksiyonunu değiştiren materyallerdir. Akıllı materyallerin en önemli türlerinden biri şekil hafızalı materyallerdir. Şekil hafızalı materyaller; şekil hafızalı alaşımlar, şekil hafızalı seramikler, şekil hafızalı polimerler, şekil hafızalı jeller ve şekil hafızalı hibrid materyaller olarak gruplandırılmıştır. Şekil hafıza etkisi, materyalin sıcaklık, nem, pH, elektrik akımı, manyetik alan, ışık gibi bir uyarana tepki olarak şekil değiştirme (deforme olma) kabiliyetidir. Bu çalışmada;  sağlık alanında kullanılan akıllı materyaller hakkında bilgi verilmektedir. Ekolojik ortamda bulunan doğal akıllı materyaller incelenmektedir. Laboratuar ortamlarda elde edilen akıllı polimerlerin üzerinde durulmaktadır. Sağlık alanında kullanılan akıllı polimer materyallerin kullanımındaki son gelişmeler üzerinde durulmuştur.

Smart Polymers Used in the Field of Health

Polymers are long chain molecules that form a series of monomers called repeating units. Polymers are obtained by chemical reaction of monomers. The polymers may be natural (organic) or synthetic. Synthetic polymers began to be studied from the middle of the nineteenth century. Today, the polymer industry is developing rapidly. Thanks to these developments, smart polymers were obtained. Smart materials are materials that are sensitive to environmental factors or feel their position and change their function in a direction determined by a change in them. One of the most important types of smart materials are shape memory materials. Shape memory materials; Shape memory alloys are grouped as shape memory ceramics, shape memory polymers, shape memory gels, and shape memory hybrid materials. The shape memory effect is the ability of the material to deform in response to a stimulus such as temperature, humidity, pH, electric current, magnetic field, light. In this study; information is given about the smart materials used in the field of health. Natural intelligent materials in the ecological environment are examined. Smart polymers obtained in the laboratory are emphasized. Recent developments in the use of smart polymer materials used in the health field have been emphasized.

___

  • Myung JH, Gajjar KA, Saric J, Eddington DT, Hong S. Dendrimer-Mediated Multivalent Binding for the Enhanced Capture of Tumor Cells, Angew. Chem., Int. Ed., 2011;50:11769–11772, DOI: 10.1002/anie.201105508.
  • Deng C, Jiang YJ, Cheng R, Meng FH, Zhong ZY. Biodegradable polymeric micelles for targeted and controlled anticancer drug delivery: promises, progress and prospects. Nano Today 2012;7(5):467e80.
  • Lendlein A. ve Kelch S. Shape memory polymers, Angew. Chem. Int. Ed., 2002;41, 2034- 2057.
  • Hu J. Shape memory polymers and textiles, Woodhead Publishing Limited, CRC Press, ABD, 2007.
  • Yoo S, Yeo J, Hwang S, Kim YH, Hur SG ve Kim E. Application of a NiTi alloy two-way shape memory helical coil for a versatile insulating jacket Materials Science and Engineering A , 2008;481–482 662–667. Salata OV. Applications of nanoparticles in biology and medicine. Journal of anobiotechnology, 2004;2(1):3.
  • Gibas I, Janik H. Synthetic Polymer Hydrogels for Biomedical Applications, Chemistry & Chemical Technology Review, 2010;4(4):298.
  • Tran PA, Zhang L, Webster TJ. Carbon Nanofibers and Carbon Nanotubes in Regenerative Medicine, Advanced Drug Delivery Reviews, 2009;61,1097–1114.
  • Xu Q, Liu Y, S, S, Li W, Chen C, Wu Y. Anti-tumor activity of paclitaxel through dual-targeting carrier of cyclic RGD and transferrin conjugated hyperbranched copolymer nanoparticles, Biomaterials, 2012;5,1627-1639.
  • Niamlang S, Sirivat A. Electrically controlled release of salicylic acid from poly(p-phenylene vinylene)/polyacrylamide hydrogels, International Journal of Pharmaceutics, 2009;371:126-133.
  • April MK, Andrea MK, Salinas CN, Kristi SA. Photodegradable Hydrogels for Dynamic Tuning of Physical and Chemical Properties, Science, 2009;324 (5923), 59-63.
  • NPCS Board of Consultants & Engineers, 2014, Disposable Products Manufacturing Handbook, India, ISBN: 9789381039328.
  • Jiang T, James R, Kumbar SG, Laurencin CT. Chitosan as a Biomaterial: Structure, Properties, and Applications in Tissue Engineering and Drug Delivery, Natural and Synthetic Biomedical Polymers, In:Sangamesh Kumbar, Cato Laurencin, Meng Deng (ed.), Chapter 5, Elsevier Inc., ISBN: 978- 0-12-396983-5, 2014;91-107.
  • Jie C, Guo-Xian Z. Ve Guo-Hua Z. Preparation And Characterization of Fe3O4 Nanoparticles Used İn İntelligent Polymer Gels And İntelligent Polymer Gels Drived By Magnetic Fields, 2008;10:35-40.
  • Atillasay P. Yük Boşalımı Tekniğiyle Hazırlanan Akıllı Jel Materyallerinin Karakterizasyonu, Yüksek Lisans Tezi, Başkent Üniversitesi, Fen Bilimleri Enstitüsü,2006.
  • Özcan İ. ve Özer Ö. “Geleceğin Polimerleri: Çevresel Faktörlere Duyarlı Akıllı Polimerler”, Tfd-Kfçg Elektronik Bülteni ,Ege Üniversitesi Eczacılık Fakültesi Farmasötik Teknoloji Abd, Ekim, 2009.
  • Birgersson E, Li H. ve Wu S. Transient Analysis Of TemperatureSensitive Hydrogels, Journal Of The Mechanics And Physics Of Solids, 2007;49,(1):1- 22.
  • Gümüşderelioğlu M. “Yumuşak ve Akıllı Polimerler”, Bilim ve Teknik, Tübitak Yayınları, 2010;43: 507.
  • Gi Cho C. Shape memory material, in: Smart Clothing Technology and Applications, Ed.:Gilsoo Cho, CRC Press, Taylor & Francis Group, USA, 2010.
  • Behl M. and Lendlein A. Shape-memory polymers. Materials Today, 2007;10 (4), 20-28.
  • Sokolowski W, Metcalfe A, Hayashi S, Yahia LH. and Raymond J. Medical applications of shape memory polymers. Biomedical Materials, 2007;2, 23-27.
  • Jeong B. and Gutawska A. Lessons from nature: stimuli responsive polymers and their biomedical applications, Trends in Biotechnology, 2002;20,7, 305-311.
  • Leng J and Du S, Eds. Shape-Memory Polymers and Multifunctional Composites. Taylor & Francis, Boca Raton, FL, 2010.
  • Snyder R, Rauscher M, Vining B et al. Shape memory polymer sensors for tracking cumulative environmental exposure. Proceedings of SPIE, 2010;7645, 76450C.
  • Chun BC, Cho TK, Chong MH, Chung YC. Structure–property relationship of shape memory polyurethane cross-linked by a polyethyleneglycol spacer between polyurethane chains. J Mater Sci.,2007;42 9045–9056.
  • Goraltchouk A, Lai J, Herrmann RA. Shape-Memory Self-Retaining Sutures, Methods of Manufacture and Methods of Use. United States Patent, No: 20110125188, 2011.
  • Small IV W, Singhal P, Wilson TS and Maitland DJ. Biomedical applications of thermally activated shape memory polymers, J Mater Chem. 2010;18,3356–3366.
  • Balcı H. Akıllı (Fonksiyonel) Tekstiller, Seçilmiş Kumaşlarda Antibakteriyel Apre ve Performans Özellikleri. Çukurova Üniversitesi, Fen Bilimleri Enstitüsü, Yüksek Lisans Tezi, Adana, 2006.
  • Wang L, Yang XF, Chen HM, Gong T, Li WB, Yang G, Zhou SB. Design of triple-shape memory polyurethane with photocrosslinking of cinnamon groups. ACS Appl. Mater. Interfaces, 2013;5(21) 10520−10528.
  • Qi Yu Chan B, Kenny Low ZW, Wen Heng SJ, Chan SY, Owh C and Loh XJ. Recent Advances in Shape Memory Soft Materials for Biomedical Applications, ACS Appl. Mater. Interfaces, 2016;8,10070−10087.