Matematikte Akran Öğretimi Sırasında Öğretici Görevi Üstlenen Öğrencilerde Üstbiliş

Bu çalışmanın amacı matematik dersindeki akran öğretimi etkinliğinde öğretici olarak görev almak isteyen öğrencilerin üstbilişlerini incelemektir. Bu bağlamda dört yedinci sınıf öğrencisinin akran öğretimi etkinliği video kayıt altına alınarak izlenmiş; aktivite sonunda da performanslarıyla ilgili birebir görüşme yapılmıştır. Öğretici öğrencilerle yapılan görüşmelerden elde edilen veriler üst bilişsel beceri ve üstbilşsel bilgi bileşenlere göre incelenmiştir. Çalışmadan elde edilen sonuçlara göre gönüllü olarak öğretmeyi seçen öğrenciler etkinliklerin planlama aşamasından sonuna kadar üstbilişsel bilgi ve becerilerini ortaya koymuşlardır. Görüşme notları öğretici görevi üstelenen öğrencilerin üstbiliş seviyesindeki etkinlik ve stratejilerini göstermiştir. Bunun yanında üstbilişsel bilgi ve becerilerin birbirini destekleyerek uyumlu bir şekilde bilişsel aktivitelerde rol oynadığı görülmüştür. Anahtar Kelimeler. Üstbilişsel Beceri, Üstbilişsel Bilgi, Üstbiliş, Akran Öğretimi, Matematik Eğitimi  

Metacognition Used by Tutors during Peer Tutoring Sessions in Mathematics

ABSTRACT: The aim of this study is to examine metacognitive skills of students who volunteered for teaching mathematical problems to their peers during peer tutoring sessions. In this regard, data were collected through video-recorded peer tutoring sessions of seventh grade students and interviews with them. In data analysis, six metacognitive components are considered: declarative knowledge, procedural knowledge and conditional knowledge under metacognitive knowledge and planning, monitoring and evaluation under metacognitive regulation. According to results it is observed that volunteer tutor students used metacognition during peer tutoring sessions starting from the preparation to the end of the task.  The interviews uncovered metacognitive functioning of the tutors through the strategies they used. Besides, it is seen that metacognitive knowledge and regulation the tutors used are interrelated with and overlapping each other.Keywords: Metacognition, metacognitive knowledge, metacognitive regulation, peer tutoring, teaching mathematics

___

  • Artzt, A. F., & Armour-Thomas, E. (1992). Development of a cognitive–metacognitive framework for protocol analysis of mathematical problem solving in small groups. Cognition and Instruction, 9, 137–175
  • Baker, L., & Brown, A. L. (1980). Metacognitive skills and reading (Technical Report No. 188). Urbana IL: University of Illinois Center for the Study of Reading. Retrieved from: http://files.eric.ed.gov/fulltext/ED195932.pdf
  • Baker, L., & Brown, A. L. (1984). Metacognitive Skills and Reading. In P. D. Pearson, R. Barr, M. L. Kamil & P. Mosenthal (Eds.), Handbook of Reading Research (pp. 353 - 394). New York: Longman
  • Bandura, A. (1982). Self-efficacy mechanism in human agency. American Psychologist, 37, 122-147. doi: 10.1037/0003-066X.37.2.122
  • Blakemore, H. (2012). Emergent teacher-researchers: A reflection on the challenges faced when conducting research in the English classroom. English Teaching: Practice & Critique, 11(2), 59-69. Retrieved from http://files.eric.ed.gov/fulltext/EJ973941.pdf
  • Chi, M. T. H., Siler, S. A., Jeong, H., Yamauchi, T., & Hausmann, R. G. (2001). Learning from human tutoring. Cognitive Science, 25, 471–533. doi:10.1207/s15516709cog2504_1
  • Cohen, P.A., Kulik, J.A., & Kulik, C.-L.C. (1982). Educational outcomes of tutoring: A meta-analysis of findings. American Educational Research Journal, 19(2), 237–248.
  • Coutinho, S. A. (2008). Self-efficacy, metacognition, and performance. North American Journal of Psychology, 10(1), 165-172.
  • Dempsey, N. P. (2010). Stimulated recall interviews in ethnography. Qualitative Sociology, 33(3), 349-367.
  • Desoete, A., & Ozsoy, G. (2009). Introduction: Metacognition, more than the lognes monster? International Electronic Journal of Elementary Education, 2(1), 1-6. Retrieved from http://www.iejee.com/index/makale/157/introduction-metacognition-more-than-the-lognes-monster
  • Desoete, A., & Veenman, M. V. J. (2006). Metacognition in mathematics: Critical issues on nature, theory, assessment and treatment. In A. Desoete, & M.V. J. Veenman (Eds.), Metacognition in mathematics education (pp.1-10). New York: Nova Science Publishers.
  • Flavell, J. H. (1978). Metacognitive development. In J. M. Scandura, & C. J. Brainerd (Eds.), Structural/process theories of complex human behavior (pp. 213-245). Alphen aan den Rijn, the Netherlands: Sijthoff and Noordhoff.
  • Flavell, J. H. (1979). Metacognition and cognitive monitoring: A new area of cognitive-developmental inquiry. American Psychologist, 34(10), 906 - 911. doi:10.1037/0003-066X.34.10.906
  • Garner, R., & Alexander, P. A. (1989). Metacognition: Answered and unanswered questions. Educational Psychologist, 24(2), 143–158. doi: 10.1207/s15326985ep2402_2
  • Gay, L., Mills. G. & Airasian, P. (2009). Educational research: Competencies for analysis and application (9th ed.). Upper Saddle River, NJ:Merrill.
  • Holton, D., & Clarke, D. (2006). Scaffolding and metacognition. International Journal of Mathematical Education in Science and Technology, 37(2), 127-143.
  • King, A. (2002). Structuring peer interaction to promote high-level cognitive processing. Theory into Practice, 41(1), 33-39. doi:10.1207/s15430421tip4101_6
  • Kramarski, B. (2004). Making sense of graphs: Does metacognitive instruction make a difference on students’ mathematical conceptions and alternative conceptions. Learning and Instruction, 14, 593-619.
  • Mevarech, Z. R. (1999). Effects of metacognitive training embedded in cooperative settings on mathematical problem solving. Journal of Educational Research, 92, 195-210.
  • Mevarech, Z. R., & Fridkin, S. (2006). The effects of IMPROVE on mathematical knowledge, mathematical reasoning and metacognition. Metacognition and Learning, 1, 85–97.
  • Mevarech, Z. R., Terkieltaub, S., Vinberger, T., & Nevet, V. (2010). The effects of meta‐cognitive instruction on third and sixth graders solving word problems. ZDM: International Journal on Mathematics Education, 42(2), 195‐203. doi: 10.1007/s11858‐010‐0244‐y.
  • Mayer, R.E. (1998). Cognitive, metacognitive, and motivational aspects of problem-solving. Instructional Science, 26, 49-63.
  • Moores, T. T., Chang, J. C. J., & Smith, D. K. (2006). Clarifying the role of self-efficacy and metacognition as indicators of learning: construct development and test. ACM SIGMIS Database. 37(2-3), 125-132. Retrieved from http://digitalscholarship.unlv.edu/cgi/viewcontent.cgi?article=1007&context=met_fac_articles
  • Narang, D., & Saini, S. (2013). Metacognition and academic performance of rural adolescents. Stud Home Com Sci, 7(3).167-175. Retrieved from http://www.krepublishers.com/02-Journals
  • Pennequin, V., Sorel, O., & Mainguy, M. (2010). Metacognition, executive functions and aging: The effect of training in the use of metacognitive skills to solve mathematical word problems. Journal of Adult Development, 17(3), 168–176.
  • Pintrich, P. R. (2002). The role of metacognitive knowledge in learning, teaching, and assessing. Theory into Practice, 41(4), 219–225. doi: 10.1207/s15430421tip4104_3
  • Rigelman, N. (2007). Fostering mathematical thinking and problem solving: The teacher's role. Teaching Children Mathematics, 13(6), 308-319
  • Roebers, C. M., Cimeli, P., Röthlisberger, M., & Neuenschwander, R. (2012). Executive functioning, metacognition, and self-perceived competence in elementary school children: An explorative study on their interrelations and their role for school achievement. Metacognition and Learning, 7(3), 151-173. doi: 10.1007/s11409-012-9089-9.
  • Roscoe, R. D. (2014). Self-monitoring and knowledge-building in learning by teaching. Instructional Science, 42(3), 327-351. doi: 10.1007/s11251-013-9283-4
  • Roscoe, R. D., & Chi, M. T. H. (2007). Understanding tutor learning: Knowledge-building and knowledge-telling in peer tutors' explanations and questions. Review of Educational Research, 77(4), 534-574. doi: 10.1007/s11251-007-9034-5
  • Schneider, W. (2010). Metacognition and memory development in childhood and adolescence. In H. S. Waters, & W. Schneider (Eds.), Metacognition, strategy use and instruction (pp. 54-81). New York: The Guilford Press.
  • Schneider, W., & Artelt, C. (2010). Metacognition and mathematics education. ZDM: The International Journal on Mathematics Education, 42(2), 149–161. doi: 10.1007/s11858-010-0240-2
  • Schraw, G. (2001). Promoting general metacognitive awareness. In H. J. Hartman (Ed.), Metacognition in learning and instruction (pp. 3-16). Norwell, MA: Kluwer Academic Publishers. doi: 10.1007/978-94-017-2243-8_1
  • Schraw, G., & Moshman, D. (1995). Metacognitive theories. Educational Psychology Review,7(4), 351-371. doi: 10.1007/BF02212307
  • Sharpley, A.M., & Sharpley, C.F. (1981). Peer tutoring: a review of the literature. Collected Original Resources in Education, 5(3), 71-148. Retrieved from https://www.researchgate.net/publication/271519182_Peer_tutoring_A_review_of_the_literature
  • Swanson, H. L. (1990). Influence of metacognitive knowledge and aptitude on problem solving. Journal of Educational Psychology, 82(2), 306–314. doi: 10.1037/0022-0663.82.2.306
  • Tella, A. (2013). The effect of peer tutoring and explicit instructional strategies on primary school pupils learning outcomes in mathematics. Bulgarian Journal of Science and Education Policy, 7(1), 5-25.
  • Topping, K., & Ehly, S. (1998). Introduction to peer-assisted learning. In K. Topping, & S. Ehly (Eds.), Peer-assisted learning (pp. 1-23). Mahwah NJ: Lawrence Erlbaum Associates.
  • Verschaffel, L., De Corte, E., Lasure, S., Vaerenbergh, Bogaerts, H., & Ratinckx, E. (1999). Learning to solve mathematical application problems: A design experiment with fifth graders. Mathematical Thinking and Learning, 1(3), 195 229.
  • Vygotsky, L. S. (1978). Interaction between learning and development. M. Cole, V. John-Steiner, S. Scribner, & E. Souberman (Eds.), Mind in society: the development of higher psychological processes (pp. 79-91). Cambridge MA: Harvard University Press.
  • Whitebread, D. (1999). Interactions between children's metacognitive abilities, working memory capacity, strategies and performance during problem-solving, European Journal of Psychology of Education, 14(4), 489-507. Retrieved from http://www.jstor.org/stable/23420267
  • Whitebread, D., Bingham, S., Grau, V., Pino Pasternak, D., & Sangster, C. (2007). Development of metacognition and self-regulated learning in young children: The role of collaborative and peer-assisted learning. Journal of Cognitive Education and Psychology, 6(3), 433–455. Retrieved from https://www.educ.cam.ac.uk/research/projects/cindle/Whitebreadetal.pdf
  • Yıldırım, A., & Şimşek, H. (2008). Nitel araştırma yöntemleri. Seçkin Yayınevi, Ankara.