Çocukların Fen Kavramlarıyla İlgili Düşüncelerinin Gelişimini Etkileyen Faktörler

Son yıllarda, çocukların bilimsel olarak doğru kabul edilenleri gerçeklerden farklı olan düşünceleri özelikle üzerinde durulan konulardan biri oluşturulmuştur. Bu çalışmada, çocukların sahipleri düşüncelerin oluşumunu ve gelişimini etkileyen faktörlerden bahseditli. Bu faktörler, çocuğa, kavramın niteliğine ve öğrenme ortamına bağlı olmak için üç ana başlık aşağı ele alınmış ve örneklerle açıklanmaya çalışılmıştır

Factors Influence The Development of Children's Ideas About Science Concepts

In recent years, children’s ideas which are different from the ideas accepted scientifically, became one of the subject especially studied on. In this study, the factors affected forming and development of the ideas children have, are mentioned. These factors are refered in there main titles, based on child, characteristic of concept and learning environment and tried to explain with examples

___

  • Alfrod, K. (1997). The development of children's ideas in science. Investigating: Australian Primary & Junior Science Journal, 13(1).
  • Bahar, M., Cihangir, S. & Gözün, Ö. (2002). Okul öncesi ve ilköretim çaındaki örencilerin canlı ve cansız nesneler ile ilgili alternatif düünce kalıpları. V. Ulusal Fen Bilimleri ve Matematik Eitimi Kongresi, Odtü,16-18 Eylül, Ankara.
  • Barker, M. (1995). A plant is an animal standing on its head. Journal of Biological Education, 29(3),201–208.
  • Bell, B. and Freyberg, P. (1985). Language in the science classroom. In R. OSBORNE, and P. FREYBERG (Eds.) Learning in science: theiımplications of children’s science (pp.29–40). Hong Kong: Heinemann.
  • Bilgin, . ve Geban, Ö. (2001). Benzeim (analoji) yöntemi kullanarak lise 2. sınıf örencilerinin kimyasal denge konusundaki kavram yanılgılarının giderilmesi. Hacettepe Üniversitesi Eitim Fakültesi Dergisi, 20, 26–32.
  • Bloom, J. W. (1992). The development of scientific knowledge in elemantary school children: a context of meaning perspective. Science Education, 76(4), 399–413.
  • Brooks, M. G. and Brooks, J. G. (1999). The courage to be constructivist. Educational Leadership, November, 18–24.
  • Campanario, J. M. (2002). The parallelism between scientists’ and students’ resistance to new scientific ideas. International Journal of Science Education, 24(10), 1095–1110.
  • Driver, R., Guesne, E. & Tiberghien, A. (1985). Childres’s ideas in science. Philadelphia: Open University Press.
  • Driver, R. (1989). Students’ conceptions and the learning of science. International Journal of Science Education, 11, Special Issue, 481–490.
  • Duit, R. (1995). The constructivist view: a fashionable and fruitful paradigm for science education research and practice. In L. P. Steffe and J. Gale (Eds) Constructivism in education (pp.271– 285). New Jersey: Lawrence Erlbaum.
  • Gilbert, J. K. and Osborne, R. J. (1980). ‘I understand, but I don’t get it”: Some problems of learning science. School Science Review, 61(218), 664–674.
  • Gilbert, J. K. and Zylbersztajn, A. (1985). A conceptual framework for science education: the case study of force and movement. European Journal of Science Education, 7(2), 107–120.
  • Gilbert, J. K., Watts, M. D. & Osborne, R. J. (1982). Students’ conceptions of ideas in mechanics. Physics Education, 17, 62–66.
  • Hançer, A. H., ensoy, Ö. & Yıldırım, H. . (2003). lköretimde çada fen bilgisi öretiminin önemi ve nasıl olması gerektii üzerine bir deerlendirme. Pamukkale Üniversitesi Eitim Fakültesi Dergisi, 1(13), 80–88.
  • Harlen, W. (1985). Primary science. taking the plunge. London: Heinnemann Educational.
  • Harlen, W. (1993). Teaching and learning primary science. London: Paul Chapman Publishing Ltd.
  • Hashweh, M. (1998). Descriptive studies of students’ conceptions in science. Journal of Research in Science Teaching, 25(2), 121–134.
  • Hewson, P. W. (1996). Teaching for conceptual change. In D. F. Treagust, R. Duit & B. J. Fraser. (Eds.). Improving Teaching and Learning in Science and Mathematics. (131–140). New York: Teachers College Press.
  • Holt, B.-G. (1991). Science with young children. Washington: National Association For The Education Of Young Children.
  • Kikas, E. (2004). Teachers’ conceptions and misconceptions concerning three natural phenomena. Journal of Research in Science Teaching, 41 (5), 432–448.
  • Kruger, C. and Summers, M. (1988). Primary school teachers’ understanding of science concepts. Journal of Education for Teaching, 14 (3), 259–265.
  • Kruger, C., Palacıo, D. and Summers, M. (1992). Surveys of english primary teachers’ conceptions of force, energy and materials. Science Education, 76(4), 339–351.
  • Küçükahmet, L. (Editör) (2001). Konu Alanı Ders Kitabı nceleme Klavuzu. Fen Bilgisi. Ankara: Nobel Yayın Daıtım.
  • Laçin imek, C. (2007). lköretim Örencilerinin Temel Fen Kavramlarıyla lgili Düünceleri. Yayımlanmamı Doktora Tezi. Ankara: Gazi Üniversitesi Eitim Bilimleri Enstitüsü.
  • Lawson, A. E. (1994). Research on the acquisition of science knowledge: epistemological foundations of cognition. In D. L. GABEL, Handbook of research on science teaching and learning. New York: MacMillan.
  • Marek, E. A. (1986). They misunderstand, but they’ll pass. The Science Teacher, 53(9), 32–35.
  • Micklo, S. J. (1995). Developing young children’s classification and logical thinking. Childhood Education, 72(1), 24–28.
  • Osborne, R. J. and Wittrock, M. C.. (1983). Learning science: A generative process. Science Education, 67(4), 489–508.
  • Osborne, R.and Freyberg, P. (1985). Children’s Science. In R. OSBORNE and P. FREYBERG (Eds.) Learning in Science: The implications of children’s science, (pp.5–14). Hong Kong: Heinemann.
  • Perkins, D. (1999). The many faces of constructivism. Educational Leadership, November, 6–11.
  • Pittman, K. M. (1999). Student-generated analogies: another way of knowing?. Journal of Research in Science Teaching, 36(1), 1–22.
  • Sequeira, M. and Leite, L. (1991). Alternative conceptions and history of science in physics teacher education. Science Education, 75(1), 45–56.
  • Stavy, R. (1990). Children’s concepiton of changes in the state of matter: from liquid (or solid) to gas. Journal of Research in Science Teaching, 27(3), 247–266.
  • Taber, K. S. (2001). When the analogy breaks down: modelling the atom on the solar system. Physics Education, 36(3), 222–226.
  • Tekkaya, C. ve Balcı, S. (2003). Örencilerin fotosentez ve bitkilerde solunum konularındaki kavram yanılgılarının saptanması. Hacettepe Üniversitesi Eitim Fakültesi Dergisi, 24, 101–107.
  • Treagust, D. F., Duit, R. & Fraser, B. J. (1996). (Eds.). Improving teaching and learning in science and mathematics. New York: Teachers College Press.
  • Tynjälä, P. (1999). Towards expert knowledge? A comparison between a constructivist and a traditional learning environment in the university. International Journal of Educational Research, 31, 357–442.
  • Tytler, R. (2002). A comparison of year 1 and year 6 students’ conceptions of evaporation and condensation: dimensions of conceptual progression. International Journal of Science Education, 22(5), 447- 467.
  • Üstün, E., Akman, B. & ETKAN, . (2004). Farklı sosyo-ekonomik düzeydeki çocukların bilisel geliimlerinin deerlendirilmesi. Hacettepe Üniversitesi Eitim Fakültesi Dergisi, 26, 205–210.
  • Von Glasersfeld. (1995). A constructivist approach to teaching. In . L. P. Steffe and J. Gale (Eds) Constructivism in education (3–15). New Jersey: Lawrence Erlbaum.
  • Wandersee, J. H. (1985). Can the history of science help science educators anticipate students’ misconceptions?. Journal of Research in Science Teaching, 23(7), 581–597.
  • Watts, M. D. and Zylbersztajn, A. (1981). A survey of some children’s ideas about force. Physics Education,16, 360–365.
  • Watts, M. (1994). Constructivism, re-constructivism and task-orientated problem solving. In F. Peter, R. Gunstone and R. White (Eds). The Content of Science: A Constructivist Approach to Its Teaching and Learning, (pp.39–58). London: The Falmer Press.
  • Webb, M. J. (1985). Analogies and their limitations. School Science and Mathematics, 85(8), 645–650.
  • White, R. T. (1994). Dimensions of content. In F., Peter, R. Gunstone and R. White (Eds). The Content of Science: A Constructivist Approach to Its Teaching and Learning, (pp.255–262). London: The Falmer Press.
İlköğretim Online-Cover
  • ISSN: 1305-3515
  • Başlangıç: 2002
  • Yayıncı: Sinan OLKUN
Sayıdaki Diğer Makaleler

Paskal Üçgeni ve Bazı Özdeşliklerin, Tam Küp Modeli ile Öğretilmesinin Başarıya Etkisi

Aziz HARMAN, M. Faysal AKIN

İlköğretim İkinci Kademe Öğrencilerinin Bilgisayara Yönelik Tutumlarının Çeşitli Değişkenler Açısından İncelenmesi: Balıkesir Örneği

Hatice ŞEREFHANOĞLU, Canan NAKİBOĞLU, Hülya GÜR

Çatışma Çözme Eğitiminin İlköğretim Çocukları Üzerindeki Etkisi

Asude BİLGİN

Bilgisayar ve Öğretim Teknolojileri Öğretmen Adaylarının Sorunları ve Geleceğe Yönelik Kaygıları

Eralp ALTUN, Alev ATEŞ

Stresle Başa Çıkma Programının Psikolojik Danışmanların Mesleki Tükenmişlik Düzeyleri Üzerine Etkisi

Aysel Esen ÇOBAN, Zeynep HAMAMCI

Okul Öncesi Öğretmenlerinin Duygusal Zeka Yetenekleri İş Doyumları ve Tükenmişlik Düzeylerinin Bazı Değişkenler Açısından İncelenmesi

Ayşe ÖZTÜRK, M. Engin DENİZ

İki Örnek Olay Çalışması: ABD'deki İlköğretim Öğretmen Adaylarının Kavramsal Değişim Konusunda Öğrencilerle Gerçekleştirdikleri Alan Uygulamalarına Yaklaşımları

Nermin BULUNUZ, Olga S. JARRETT, Barbara MEYERS

Sınıf Öğretmeni Adaylarının Alternatif Ölçme-Değerlendirme Yöntem ve Tekniklerinin Uygulama Okullarında Kullanımına İlişkin Görüşleri

Nil DUBAN, E. Aysın KÜÇÜKYILMAZ

Çocukların Fen Kavramlarıyla İlgili Düşüncelerinin Gelişimini Etkileyen Faktörler

Canan LACIN SIMSEK, Ramazan TEZCAN

Ardışık Doğal Sayılardan Pisagor Üçlülerine

M. Faysal AKIN, Aziz HARMAN