Yakıt Hücreli Mikro-kojenerasyon Sistemlerinin Evsel Kullanım Açısından İncelenmesi

Enerji kaynaklarını büyük oranda ithal eden ülkemizde, gelecek nesillere yaşanabilir bir ülke ve dünya bırakmak için enerjiyi verimli kullanmak ve çevreyi korumak son derece önemlidir. Enerji kayıp sebeplerinden biri iletim kayıplarıdır. Bütün dünyada bu kaybın önüne geçmek için “dağıtık enerji üretimi” yöntemi teşvik edilmektedir. Bu yöntemde enerji mikro-kojenerasyon ve benzeri uygulamalarla, kullanılacağı yerde üretilmektedir. Bu çalışmanın amacı, yerinde üretimin en verimli örneklerinden birisi olan, yakıt hücreli mikro-kojenerasyon uygulamalarının teknik ve ekonomik değerlendirmesini yapan geniş bir literatür araştırması ile ilgili bilim alanına katkıda bulunmaktır. Bunun için mikro-kojenerasyon tanımı ve literatürdeki mikro-kojenerasyon çeşitleri ve karşılaştırmaları yapılmış, evsel uygulamalar için hidrojen yakıt hücresi çeşitleri detaylandırılmıştır. Ayrıca evsel yakıt hücresi tipi seçimi için bilgiler verilmiştir.

Investigation of Fuel Cell Micro-cogeneration Systems for Domestic Use

Turkey imports the bulk of its energy needs. It is extremely important to use energy efficiently and economically and to protect the environment, to leave a better country and world to future generations. Some of the energy losses are because of transmission losses. Distributed "energy generation" method is encouraged to prevent this loss all over the world. In this method, energy is produced at the location of end user by micro-cogeneration and similar applications. The aim of this study is to contribute to the related science area with an extensive literature research that makes technical and economic evaluation of fuel cell micro-cogeneration applications, which is one of the most efficient examples of on-site production. For this aim, the definition of micro-cogeneration and the types and comparisons of micro-cogeneration through the literature is given. Hydrogen fuel cell types for domestic applications are detailed and information for domestic fuel cell type selection is conducted.

___

  • Adam A., Fraga E. S., Brett D. J. L. (2013). Modelling and optimisation in terms of CO2 emissions of a solid oxide fuel cell based micro-CHP system in a four bedroom house in London. Energy Procedia, 42, 201–209.
  • Adam A., Fraga E. S., Brett D. J. L. (2018). A modelling study for the integration of a PEMFC micro-CHP in domestic building services design. Applied Energy, 225(March), 85–97.
  • Angrisani G., Marrasso E., Roselli C., Sasso M. (2014). A review on microcogeneration national testing procedures. Energy Procedia, 45, 1372–1381.
  • Arsalis A. (2019). A comprehensive review of fuel cell-based micro-combined-heat-and-power systems. Renewable and Sustainable Energy Reviews, 105(February), 391–414.
  • Ashari G. R., Ehyaei M. A., Mozafari A., Atabi F., Hajidavalloo E., Shalbaf S. (2012). Exergy, economic, and environmental analysis of a PEM fuel cell power system to meet electrical and thermal energy needs of residential buildings. Journal of Fuel Cell Science and Technology, 9(5), 1–11.
  • Barelli L., Bidini G., Gallorini F., Ottaviano A. (2011). An energetic-exergetic analysis of a residential CHP system based on PEM fuel cell. Applied Energy, 88(12), 4334–4342.
  • Cao Y., Li Y., Zhang G., Jermsittiparsert K., Nasseri, M. (2020). An efficient terminal voltage control for PEMFC based on an improved version of whale optimization algorithm. Energy Reports, 6, 530–542.
  • Capaldi P. (2014). A high efficiency 10 kWe microcogenerator based on an Atkinson cycle internal combustion engine. Applied Thermal Engineering, 71(2), 913–920.
  • Capaldi P. (2016). A high efficiency 20 kWe microcogeneration unit based on a turbocharged automotive gas engine. Applied Thermal Engineering, 109, 803–808.
  • Cozzolino R., Cicconardi S. P., Galloni E., Minutillo M., Perna A. (2011). Theoretical and experimental investigations on thermal management of a PEMFC stack. International Journal of Hydrogen Energy, 36(13), 8030–8037.
  • Devrim Y., Yapıcı E. Ö. (2018). Yüksek Sıcaklık Proton Değişim Membran Yakıt Hücresi Mikro-Kojenerasyon Uygulamasının Deneysel Ve Teorik İncelenmesi. J. of Thermal Science and Technology, 38(1), 73–82.
  • Di Marcoberardino G., Chiarabaglio L., Manzolini G., Campanari S. (2019). A Techno-economic comparison of micro-cogeneration systems based on polymer electrolyte membrane fuel cell for residential applications. Applied Energy, 239(March 2018), 692–705.
  • Dodds P. E., Staffell I., Hawkes A. D., Li F., Grünewald P., McDowall W., Ekins P. (2015). Hydrogen and fuel cell technologies for heating: A review. International Journal of Hydrogen Energy, 40(5), 2065–2083.
  • Dorer V., Weber R., Weber A. (2005). Performance assessment of fuel cell micro-cogeneration systems for residential buildings. Energy and Buildings, 37(11 SPEC. ISS.), 1132–1146.
  • Enerji Verimliliği Kanunu, Resmin Gazete. Kanun No:5627 (2007).
  • Elmer T., Worall M., Wu S., Riffat S. B. (2015). Emission and economic performance assessment of a solid oxide fuel cell micro-combined heat and power system in a domestic building. Applied Thermal Engineering, 90, 1082–1089.
  • Gokcek M. (2017). Waste To Energy : Exploitation of Landfill Gas in. Omer Halisdemir University Journal of Engineering Sciences, 6(2), 710–716.
  • Jannelli E., Minutillo M., Perna A. (2013). Analyzing microcogeneration systems based on LT-PEMFC and HT-PEMFC by energy balances. Applied Energy, 108, 82–91.
  • Klonowicz P., Witanowski Ł., Jȩdrzejewski Ł., Suchocki T., Lampart P. (2017). A turbine based domestic micro ORC system. Energy Procedia, 129, 923–930.
  • Kupecki J., Skrzypkiewicz M., Wierzbicki M., Stepien M. (2015). Analysis of a Micro-CHP Unit with in-series SOFC Stacks Fed by Biogas. Energy Procedia, 75, 2021–2026.
  • Kupecki J., Bdyda K. (2013). Mathematical model of a plate fin heat exchanger operating under solid oxide fuel cell working conditions. Archives of thermodynamics, 34(4), 3–21.
  • Lamas J., Shimizu H., Matsumura E., Senda J. (2013). Fuel consumption analysis of a residential cogeneration system using a solid oxide fuel cell with regulation of heat to power ratio. International Journal of Hydrogen Energy, 38(36), 16338–16343.
  • Mehrpooya M., Khodayari R., Moosavian S. A., Dadak A. (2020). Optimal design of molten carbonate fuel cell combined cycle power plant and thermophotovoltaic system. Energy Conversion and Management, 221, 113177.
  • Micro-CHP potential analysis European level report Partner Name : Energy Matters (Sayı December). (2014).
  • Napoli R., Gandiglio M., Lanzini A., Santarelli M. (2015). Techno-economic analysis of PEMFC and SOFC micro-CHP fuel cell systems for the residential sector. Energy and Buildings, 103, 131–146.
  • Nuroğlu F. M. (2011). Dağıtılmış Üretim İçeren Dağıtım Şebekelerinde Merkezi Koordinasyon Rölesi Tasarımı. Kocaeli Üniversitesi. Özenir A. (2019). Kojenerasyon enerji̇ veri̇mli̇li̇ği̇. V. Enerji Verimliliği Günleri, 1–14.
  • Pareta M., Choudhury S. R., Somaiah B., Rangarajan J., Matre N., Palande J. (2011). Methanol reformer integrated phosphoric acid fuel cell (PAFC) based compact plant for field deployment.International journal of hydrogen energy, 36(22), 14771-14778.
  • Romdhane J., Louahlia H., Marion M. (2018). Dynamic modeling of an eco-neighborhood integrated micro-CHP based on PEMFC: Performance and economic analyses. Energy and Buildings, 166, 93–108.
  • Sorace M., Gandiglio M., Santarelli M. (2017). Modeling and techno-economic analysis of the integration of a FC-based micro-CHP system for residential application with a heat pump. Energy, 120(2016), 262–275.
  • Sungur B., Özdoğan M., Topaloğlu B., Namlı L. (2017). Küresel Enerji Tüketimi Bağlamında Mikro Kojenerasyon Sistemlerinin Teknik ve Ekonomik Değerlendirilmesi Technical and Economical Evaluation of Micro-Cogeneration Systems in the Context of Global Energy Consumption. Mühendis ve Makina, 58(686), 1–20.
  • Taccani R., Chinese T., Zuliani N. (2017). Performance analysis of a micro CHP system based on high temperature PEM fuel cells subjected to degradation. Energy Procedia, 126, 421–428.
  • Unver U., Kilic M. (2007). Second law based thermoeconomic analysis of combined cycle power plants considering the effects of environmental temperature and load variations. International Journal of Energy Research, 31(2), 148–157.
  • Ünver Ü., Kılıç M. (2005). Çevre Sıcaklığının Bir Kombine Çevrim Güç Santralinin Performansına Etkisi. Uludağ Üniversitesi Mühendislik-Mimarlık F, 49–58.
  • Unver U, Kelesoglu A. Kilic M. (2018). A Novel Method For Predıctıon Of Gas Turbıne Power Productıon Degree-Day Method. Thermal Science, 22(Suppl. 3), 809–817.
  • Unver U., Kilic M. (2014). Performance estimation of gas turbine system via degree-day method. Içinde I. Dincer, A. Midilli, & H. Kucuk (Ed.), Progress in Exergy, Energy, and the Environment. Springer Cham.
  • Unver U., Kilic M. (2017). Influence of environmental temperature on exergetic parameters of a combined cycle power plant. International Journal of Exergy, 22(1), 73–88.
  • Unver U., Mert M. S., Direk M., Yuksel F., Kilic M. (2018). Design of an Inlet Air-Cooling System for a Gas Turbine Power Plant. Içinde F. Aloui & I. Dincer (Ed.), Exergy for A Better Environment and Improved Sustainability 1 (ss. 1089–1100). Springer, Cham.
  • Valenti G., Campanari S., Silva P., Fergnani N., Ravidà A., Di Marcoberardino G., Macchi E. (2014). Modeling and testing of a micro-cogeneration Stirling engine under diverse conditions of the working fluid. Energy Procedia, 61, 484–487.
  • Valenti Gianluca, Silva P., Fergnani N., Di Marcoberardino G., Campanari S., Macchi E. (2014). Experimental and numerical study of a micro-cogeneration Stirling engine for residential applications. Energy Procedia, 45, 1235–1244.
  • Vijay A., Hawkes A. (2018). Impact of dynamic aspects on economics of fuel cell based micro co-generation in low carbon futures. Energy, 155, 874–886.
  • Windeknecht M., Tzscheutschler P. (2015). Optimization of the heat output of high temperature fuel cell micro-CHP in single family homes. Energy Procedia, 78, 2160–2165.
  • Wit J. de, Näslund M. (2011). Mini and Micro Cogeneration. Içinde Danish Gas Technology Centre, ICCI.