Karışım Herbisitlerin (Halauxifen methyl+Pyroxsulam+Cloquintocet asit) In Vivo Toksisitesi: Zebra Balığı Embriyo ve Larva Modeli

Herbisitler suda yaşayan organizmalar ve insan sağlığı için ciddi tehlike oluşturabilir. Karışım formülasyonu olarak hazırlanan herbisitler ise çok daha fazla toksik etkilere sahip olabilir ancak literatürde bu herbisitlerin toksisitelerini gösteren az sayıda çalışma vardır. Çalışmamızda, piyasada son yıllarda yoğun kullanılan karışım herbisitlerin (Halauxifen methyl+Pyroxsulam+Cloquintocet asit) farklı konsantrasyonlarının (0.25, 0.5 ve 1 ppm) zebra balığı embriyo ve larvalarındaki toksik etkileri gelişimsel parametreler ve davranış testleri ile değerlendirilmiştir. Karışım herbisitlere 96 saat maruz kalan embriyo ve larvalarda özellikle en yüksek uygulama konsantrasyonunda (1 ppm) hayatta kalma oranı azalmış ve larvaların koryondan çıkışı gecikmiştir. Embriyo ve larvalarda karışım herbisitlerin etkisi ile çeşitli malformasyonlar gözlemlenmiştir. Ayrıca karışım herbisit 1 ppm konsantrasyonda zebra balığı larvalarında 96. saatte kat ettikleri toplam mesafede artış olmuş ve hiperaktivite meydana geldiği belirlenmiştir. Çalışmamız karışım kimyasalların sucul organizmalardaki toksik etkilerinin anlaşılması açısından önemli veri sağlamaktadır. Sonuç olarak sucul ekosistemde karışım olarak bulunan kimyasalların (herbisit, insektisit, fungusit veya ağır metaller) sucul canlılar için bir tehdit olduğu düşüldüğünden daha fazla ve detaylı çalışmaların yapılması gerekmektedir.

In Vivo Toxicity of Mixture Herbicides (Halauxifen methyl+Pyroxsulam+Cloquintocet acid): Zebrafish Embryo and Larva Model

Herbicides can pose a serious hazard to aquatic organisms and human health. Herbicides prepared as a mixture formulation may have much more toxic effects, but there are few studies in the literature showing the toxicities of these herbicides. In our study, the toxic effects of different concentrations (0.25, 0.5 and 1 ppm) of mixed herbicides (Halauxifen methyl+Pyroxsulam+Cloquintocet acid), which have been used extensively in the market in recent years, on zebrafish embryos and larvae were evaluated with developmental parameters and behavioral tests. Embryos and larvae exposed to the mixed herbicides for 96 hours had reduced survival and delayed exit from the chorion, especially at the highest application concentration (1 ppm). Various malformations were observed in embryos and larvae with the effect of mixed herbicides. In addition, it was determined that the total distance covered by zebrafish larvae at 96th hour increased and hyperactivity occurred at 1 ppm concentration of the mixed herbicide. Our study provides important data in terms of understanding the toxic effects of mixed chemicals on aquatic organisms. As a result, more and more detailed studies are required since chemicals (herbicides, insecticides, fungicides or heavy metals) found as a mixture in the aquatic ecosystem are considered to be a threat to aquatic organisms.

___

  • Abdel-Wahab, S. I., Aioub, A. A., Salem, R. E. ve El-Sobki, A. E. (2021). Do the herbicides pinoxaden, tribenuron-methyl, and pyroxsulam influence wheat (Triticum aestivum L.) physiological parameters?. Environmental Science and Pollution Research, 28(37), 51961-51970.
  • Ali, S., Ullah, M. I., Sajjad, A., Shakeel, Q. ve Hussain, A. (2021). Environmental and health effects of pesticide residues. Sustainable Agriculture Reviews 48: Pesticide Occurrence, Analysis and Remediation Vol. 2 Analysis, 311-336.
  • Baltazar, M. T., Dinis-Oliveira, R. J., de Lourdes Bastos, M., Tsatsakis, A. M., Duarte, J. A. ve Carvalho, F. (2014). Pesticides exposure as etiological factors of Parkinson's disease and other neurodegenerative diseases—a mechanistic approach. Toxicology letters, 230(2), 85-103.
  • Bashirzade, A. A., Zabegalov, K. N., Volgin, A. D., Belova, A. S., Demin, K. A., de Abreu, M. S., Babchenko, V. Y., Bashirzade, K. A., Yenkoyan, K. B., Tikhonova, M. A., Amstislavskaya, T. G., ve Kalueff, A. V. (2022). Modeling neurodegenerative disorders in zebrafish. Neuroscience & Biobehavioral Reviews, 104679.
  • Caioni, G., Merola, C., Perugini, M., d’Angelo, M., Cimini, A. M., Amorena, M. ve Benedetti, E. (2021). An Experimental Approach to Study the Effects of Realistic Environmental Mixture of Linuron and Propamocarb on Zebrafish Synaptogenesis. International Journal of Environmental Research and Public Health, 18(9), 4664.
  • Chinta, S. J., Woods, G., Demaria, M., Rane, A., Zou, Y., McQuade, A., Rajagopalan, S., Limbad, C., Madden, D. T., Campisi, J. ve Andersen, J. K. (2018). Cellular senescence is induced by the environmental neurotoxin paraquat and contributes to neuropathology linked to Parkinson’s disease. Cell reports, 22(4), 930-940.
  • Costa, G., Fernandes, A., Santos, T., Brito, L., Rodrigues, L., Valadares, M., Felzenszwalb, I., Ferraz, E., Leme, D. M. ve Oliveira, G. (2022). In vitro and in vivo cytotoxicity assessment of glyphosate and imazethapyr-based herbicides and their association. Journal of Toxicology and Environmental Health, Part A, 85(12), 481-493.
  • da Costa Chaulet, F., de Alcantara Barcellos, H. H., Fior, D., Pompermaier, A., Koakoski, G., da Rosa, J. G. S., Fagundes, M. ve Barcellos, L. J. G. (2019). Glyphosate-and fipronil-based agrochemicals and their mixtures change zebrafish behavior. Archives of environmental contamination and toxicology, 77, 443-451.
  • Ilie, O. D., Paduraru, E., Robea, M. A., Balmus, I. M., Jijie, R., Nicoara, M., Ciobica, A., Nita, I. B., Dobrin, R. ve Doroftei, B. (2021). The Possible Role of Bifidobacterium longum BB536 and Lactobacillus rhamnosus HN001 on Locomotor Activity and Oxidative Stress in a Rotenone-Induced Zebrafish Model of Parkinson’s Disease. Oxidative Medicine and Cellular Longevity, 2021. Johnson, J., Mercado-Ayon, E., Mercado-Ayon, Y., Dong, Y. N., Halawani, S., Ngaba, L., & Lynch, D. R. (2021). Mitochondrial dysfunction in the development and progression of neurodegenerative diseases. Archives of Biochemistry and Biophysics, 702, 108698. Köktürk, M. (2022). In vivo toxicity assessment of Remazol Gelb–GR (RG-GR) textile dye in zebrafish embryos/larvae (Danio rerio): Teratogenic effects, biochemical changes, immunohistochemical changes. Science of The Total Environment, 852, 158473.
  • Lan, Y., Sun, Y., Liu, Z., Wei, S., Huang, H., Cao, Y., Li, W. ve Huang, Z. (2022). Mechanism of resistance to pyroxsulam in multiple-resistant Alopecurus myosuroides from China. Plants, 11(13), 1645.
  • Lee, W. S., Cho, H. J., Kim, E., Huh, Y. H., Kim, H. J., Kim, B., Kang, T., Lee, J. S. ve Jeong, J. (2019). Bioaccumulation of polystyrene nanoplastics and their effect on the toxicity of Au ions in zebrafish embryos. Nanoscale, 11(7), 3173-3185.
  • Liu, S., Wang, L., Chen, K., Yang, H., Ling, M., Wu, L., Zhou, X., Ma, G. ve Bai, L. (2022). Combined effects of S-metolachlor and benoxacor on embryo development in zebrafish (Danio rerio). Ecotoxicology and Environmental Safety, 238, 113565.
  • McGonigle, P. (2014). Animal models of CNS disorders. Biochemical pharmacology, 87(1), 140-149. Mit, C., Tebby, C., Gueganno, T., Bado-Nilles, A., & Beaudouin, R. (2021). Modeling acetylcholine esterase inhibition resulting from exposure to a mixture of atrazine and chlorpyrifos using a physiologically-based kinetic model in fish. Science of the Total Environment, 773, 144734.
  • Mithila, J., Hall, J. C., Johnson, W. G., Kelley, K. B., & Riechers, D. E. (2011). Evolution of resistance to auxinic herbicides: historical perspectives, mechanisms of resistance, and implications for broadleaf weed management in agronomic crops. Weed science, 59(4), 445-457.
  • Obenland, O. A., & Riechers, D. E. (2020). Identification of chromosomes in Triticum aestivum possessing genes that confer tolerance to the synthetic auxin herbicide halauxifen-methyl. Scientific reports, 10(1), 1-7.
  • Oliveira, E. M. N., Selli, G. I., von Schmude, A., Miguel, C. A. M. I. L. A., Laurent, S., Vianna, M. R. M., & Papaléo, R. M. (2020). Developmental toxicity of iron oxide nanoparticles with different coatings in zebrafish larvae. Journal of Nanoparticle Research, 22, 1-16.
  • Ong, K. J., Zhao, X., Thistle, M. E., MacCormack, T. J., Clark, R. J., Ma, G., Martinez-Rubi, Y., Simard, B., Loo, J. S. C., Veinot, J. G. C. ve Goss, G. G. (2014). Mechanistic insights into the effect of nanoparticles on zebrafish hatch. Nanotoxicology, 8(3), 295-304.
  • Palmer, C. S., Anderson, A. J., & Stojanovski, D. (2021). Mitochondrial protein import dysfunction: Mitochondrial disease, neurodegenerative disease and cancer. FEBS letters, 595(8), 1107-1131. Pistollato, F., de Gyves, E. M., Carpi, D., Bopp, S. K., Nunes, C., Worth, A., & Bal-Price, A. (2020). Assessment of developmental neurotoxicity induced by chemical mixtures using an adverse outcome pathway concept. Environmental Health, 19(1), 1-26. Rueda-Ruzafa, L., Cruz, F., Roman, P., & Cardona, D. (2019). Gut microbiota and neurological effects of glyphosate. Neurotoxicology, 75, 1-8.
  • Saha, S., Majumder, S., Das, S., Das, T. K., Bhattacharyya, A., & Roy, S. (2018). Effect of ph on the transformation of a new readymix formulation of the herbicides bispyribac sodium and metamifop in water. Bulletin of environmental contamination and toxicology, 100, 548-552.
  • Sano, K., Inohaya, K., Kawaguchi, M., Yoshizaki, N., Iuchi, I., & Yasumasu, S. (2008). Purification and characterization of zebrafish hatching enzyme–an evolutionary aspect of the mechanism of egg envelope digestion. The FEBS Journal, 275(23), 5934-5946.
  • Santos, J., Barreto, A., Sousa, É. M., Calisto, V., Amorim, M. J., & Maria, V. L. (2022). The role of nanoplastics on the toxicity of the herbicide phenmedipham, using Danio rerio embryos as model organisms. Environmental Pollution, 303, 119166.
  • Shukla, S., Jhamtani, R. C., Dahiya, M. S., & Agarwal, R. (2017). Oxidative injury caused by individual and combined exposure of neonicotinoid, organophosphate and herbicide in zebrafish. Toxicology Reports, 4, 240-244.
  • Singha, D., Das, S., Bhowmick, N., Kundu, A., Bhattacharyya, A., Kumar, M., Jana, M. ve Roy, S. (2022). Impact of soil type and temperature on dissipation dynamics of a new readymix formulation of halauxifen-methyl+ pyroxsulam. Bulletin of Environmental Contamination and Toxicology, 109(2), 373-378.
  • Sulukan, E., Baran, A., Kankaynar, M., Kızıltan, T., Bolat, İ., Yıldırım, S., Akgül Ceyhun, H. ve Ceyhun, S. B. (2023). Global warming and glyphosate toxicity (II): Offspring zebrafish modelling with behavioral, morphological and immunohistochemical approaches. Science of The Total Environment, 856, 158903.
  • Sulukan, E., Şenol, O., Baran, A., Kankaynar, M., Yıldırım, S., Kızıltan, T., Bolat, İ. ve Ceyhun, S. B. (2022). Nano-sized polystyrene plastic particles affect many cancer-related biological processes even in the next generations; zebrafish modeling. Science of The Total Environment, 838, 156391.
  • Sun, Q., Guo, W., Wang, P., Chang, Z., Xia, X., & Du, Q. (2021). Toxicity of 2-methyl-4-chlorophenoxy acetic acid alone and in combination with cyhalofop-butyl to Cyprinus carpio embryos. Environmental Toxicology and Pharmacology, 87, 103697.
  • Wang, X. H., Souders II, C. L., Zhao, Y. H., & Martyniuk, C. J. (2018). Mitochondrial bioenergetics and locomotor activity are altered in zebrafish (Danio rerio) after exposure to the bipyridylium herbicide diquat. Toxicology letters, 283, 13-20. Wang, Y., Liu, W., Yang, J., Wang, F., Sima, Y., Zhong, Z. M., Wang, H., Hu, L. F. ve Liu, C. F. (2017). Parkinson’s disease-like motor and non-motor symptoms in rotenone-treated zebrafish. Neurotoxicology, 58, 103-109.
  • Weed, D. L. (2021). Does paraquat cause Parkinson’s disease? A review of reviews. Neurotoxicology, 86, 180-184.
  • Westerfield, M. (2000). The zebrafish book: a guide for the laboratory use of zebrafish. http://zfin. org/zf_info/zfbook/zfbk. html.
  • Zhao, H., Xu, J., Dong, F., Liu, X., Wu, Y., Wu, X., & Zheng, Y. (2015). Simultaneous determination of three herbicides in wheat, wheat straw, and soil using a quick, easy, cheap, effective, rugged, and safe method with ultra high performance liquid chromatography and tandem mass spectrometry. Journal of Separation Science, 38(7), 1164-1171.