Schiff Bazlı Fonksiyonelleştirilmiş Yeni Sporopollenin Mikrokapsülünün Sentezi ve Karakterizasyonu ve Cu(II)'nin Etkili Adsorpsiyonu için Kullanımı

Kanser ve karaciğer hasarı gibi ciddi hastalıklara neden olan Cu (II) iyonları özellikle su kirliliğinde önemli bir yere sahiptir. Bu ölümcül bakır (II) iyonlarını sulu çözeltiden etkin bir şekilde uzaklaştırmak için, adsorban olarak kullanılacak yeni işlevselleştirilmiş sporopollenin mikrokapsüllerinin (Sp-CPTS-HNMAA) sentezi amaçlandı. Sporopollenin yüzeyini işlevselleştirmek için kullanılan Schiff bazı (HNMAA), 2-Hidroksi-1-naftaldehit ve glisinin reaksiyonu sonucu elde edilmiş ve 1H ve 13C NMR ile karakterize edilmiştir. Sentezlenen Sp-CPTS-HNMAA mikrokapsül adsorbanı, FTIR, XRD ve SEM teknikleri ile başarılı bir şekilde karakterize edildi. Adsorpsiyon deneylerinde başlangıç Cu (II) konsantrasyonu, sıcaklık, pH, anyon, temas süresi ve adsorban dozunun etkileri araştırıldı. Adsorpsiyon dengesi, 150 dakikalık bir temas süresi, 30 mg L-1 başlangıç Cu (II) iyon konsantrasyonu, pH = 6 ve 0.03 g adsorban dozu ile maksimum Cu(II) giderimi ile % 92.73 olarak hesaplandı. Sp-CPTS-HNMAA mikrokapsül adsorbanının maksimum Cu (II) adsorpsiyon kapasitesi Langmuir izoterminden hesaplandı ve 32.57 mg g-1 olarak bulundu. Adsorpsiyon izotermi ve kinetik çalışmaları, Langmuir adsorpsiyon izotermine ve yalancı ikinci dereceden kinetik modele uyduğunu göstermiştir. Termodinamik çalışmaların sonuçları, adsorpsiyon reaksiyonunun tersinir, kendiliğinden ve endotermik olduğunu ve ayrıca Cu (II) iyonlarının Sp-CPTS-HNMAA üzerinde adsorpsiyonunun kimyasal bir adsorpsiyon işlemi olduğunu göstermiştir.

Synthesis and Characterization of the Schiff Base-on Functionalized Novel Sporopollenin Microcapsule and Its Use for Effective Adsorption of Cu (II)

Cu (II) ions, which cause serious diseases such as cancer and liver damage, have an important place, especially in water pollution. To effectively remove these deadly copper (II) ions from aqueous solution, the synthesis of a new functionalized sporopollenin microcapsules (Sp-CPTS-HNMAA) to be used as an adsorbent was aimed. Schiff base (HNMAA), used to functionalize the surface of sporopollenin, was obtained as a result of the reaction of 2-Hydroxy-1-naphthaldehyde and glycine and was characterized by 1H and 13C NMR. The synthesized Sp-CPTS-HNMAA microcapsule adsorbent was successfully characterized by FTIR, XRD, and SEM techniques. The effects of initial Cu (II) concentration, temperature, pH, anion, contact time, and adsorbent dose were researched in adsorption experiments. The adsorption equilibrium was calculated as 92.73%, with a contact time of 150 min, initial Cu (II) ion concentration of 30 mg L-1, pH = 6, and maximum Cu(II) removal with 0.03 g adsorbent dose. The maximum Cu (II) adsorption capacity of Sp-CPTS-HNMAA microcapsule adsorbent was calculated from the Langmuir isotherm and found to be 32.57 mg g-1. Adsorption isotherm and kinetic studies indicated that it fits the Langmuir adsorption isotherm and pseudo-second-order kinetic model. The results of thermodynamic studies show that the adsorption reaction is reversible, spontaneous, and endothermic, and also showed that the adsorption of Cu (II) ions on Sp-CPTS-HNMAA is a chemical adsorption process.

___

  • Agarwal A, Kumar A, Gupta P, Tomar R, Singh NB, 2021. Cu (II) ions removal from water by charcoal obtained from marigold flower waste. Materials Today: Proceedings 34:875-879.
  • Ahmad NF, Kamboh MA, Nodeh HR, Abd Halim SNB, Mohamad S, 2017. Synthesis of piperazine functionalized magnetic sporopollenin: a new organic-inorganic hybrid material for the removal of lead (II) and arsenic (III) from aqueous solution. Environmental Science and Pollution Research, 24(27):21846-21858.
  • Ahmad R, Mirza A, 2017. Adsorption of Pb (II) and Cu (II) by Alginate-Au-Mica bionanocomposite: kinetic, isotherm, and thermodynamic studies. Process Safety and Environmental Protection 109:1-10.
  • Akpomie KG, Dawodu FA, Adebowale KO, 2015. Mechanism on the sorption of heavy metals from binary-solution by a low cost montmorillonite and its desorption potential. Alexandria Engineering Journal 54(3):757-767.
  • Ali RM, Hamad HA, Hussein MM, Malash GF, 2016. Potential of using green adsorbent of heavy metal removal from aqueous solutions: adsorption kinetics, isotherm, thermodynamic, mechanism and economic analysis. Ecological Engineering 91:317-332.
  • Barbosa TR, Foletto EL, Dotto GL, Jahn SL, 2018. Preparation of mesoporous geopolymer using metakaolin and rice husk ash as synthesis precursors and its use as potential adsorbent to remove organic dye from aqueous solutions. Ceramics International 44(1):416-423.
  • Bartell FE, Thomas TL, Fu Y, 1951. Thermodynamics of adsorption from solutions. IV. Temperature dependence of adsorption. The Journal of Physical Chemistry 55(9):1456-1462.
  • Chandrasekaram K, Alias Y, Fathullah SF, Lee VS, Haron N, Raoov M, Mohamad S, 2021. Sporopollenin supported ionic liquids biosorbent for enhanced selective adsorption of 2, 4-dinitrophenol from aqueous environment. Materials Today Communications 28:102587.
  • Chen Y, Cui J, Liang Y, Chen X, Li Y, 2021. Synthesis of magnetic carboxymethyl cellulose/graphene oxide nanocomposites for adsorption of copper from aqueous solution. International Journal of Energy Research 45(3):3988-3998.
  • Çimen A, Bilgiç A, Kursunlu AN, Gübbük, İH, Uçan Hİ, 2014. Adsorptive removal of Co(II), Ni(II), and Cu(II) ions from aqueous media using chemically modified sporopollenin of Lycopodium clavatum as novel biosorbent. Desalination and Water Treatment 52(25-27):4837-4847.
  • Dyab AK, Sadek KU, 2018. Microwave assisted one-pot green synthesis of cinnoline derivatives inside natural sporopollenin microcapsules. RSC Advances 8(41):23241-23251.
  • El-Massaoudi M, Radi S, Lamsayah M, Tighadouini S, Séraphin KK, Kouassi LK, Garcia Y, 2021. Ultra-fast and highly efficient hybrid material removes Cu (II) from wastewater: Kinetic study and mechanism. Journal of Cleaner Production 284:124757.
  • Gamal A, Ibrahim AG, Eliwa EM, El-Zomrawy AH, El-Bahy SM, 2021. Synthesis and characterization of a novel benzothiazole functionalized chitosan and its use for effective adsorption of Cu (II). International Journal of Biological Macromolecules 183:1283-1292.
  • Ge Y, Cui X, Liao C, Li Z, 2017. Facile fabrication of green geopolymer/alginate hybrid spheres for efficient removal of Cu (II) in water: Batch and column studies. Chemical Engineering Journal 311:126-134.
  • Ge Y, Xiao D, Li Z, Cui X, 2014. Dithiocarbamate functionalized lignin for efficient removal of metallic ions and the usage of the metal-loaded bio-sorbents as potential free radical scavengers. Journal of Materials Chemistry A 2(7):2136-2145.
  • Gode F. Pehlivan E, 2007. Sorption of Cr(III) onto chelating b-DAEG–sporopollenin and CEP–sporopollenin resins. Bioresource Technology 98:904-911.
  • Gubbuk IH, Gürfidan L, Erdemir S, Yilmaz M. 2012b. Surface modification of sporopollenin with calixarene derivative. Water, Air, & Soil Pollution 223(5):2623-2632.
  • Gubbuk IH, Ozmen M, Maltas E. 2012a. Immobilization and characterization of hemoglobin on modified sporopollenin surfaces. International Journal of Biological Macromolecules 50(5):1346-1352.
  • Gürten AA, Uçan M, Abdullah MI, Ayar A, 2006. Effect of the temperature and mobile phase composition on the retention behavior of nitroanilines on ligand-exchange stationary phase. Journal of hazardous materials 135(1-3):53-57.
  • Ibrahim WAW, Hassan AAM, Sutirman ZA, Bakar MB, 2020. A mini review on sporopollenin-based materials for removal of heavy metal ions from aqueous solution. Malaysian Journal of Analytical Sciences 24(3):300-312.
  • Kayalvizhi K, Alhaji NMI, Saravanakkumar D, Mohamed SB, Kaviyarasu K, Ayeshamariam A, Elshikh MS, 2021. Adsorption of copper and nickel by using sawdust chitosan nanocomposite beads–A kinetic and thermodynamic study. Environmental Research 203:111814.
  • Lavanya R, Gomathi T, Vijayalakshmi K, Saranya M, Sudha PN, Anil S, 2017. Adsorptive removal of copper (II) and lead (II) using chitosan-g-maleic anhydride-g-methacrylic acid copolymer. International journal of biological macromolecules 104:1495-1508.
  • Manzoor K, Ahmad M, Ahmad S, Ikram S, 2019. Synthesis, characterization, kinetics, and thermodynamics of EDTA-modified chitosan-carboxymethyl cellulose as Cu (II) ion adsorbent. ACS omega 4(17):17425-17437.
  • Mu, R, Liu, B, Chen, X, Wang, N, Yang, J, 2020. Adsorption of Cu (II) and Co (II) from aqueous solution using lignosulfonate/chitosan adsorbent. International Journal of Biological Macromolecules, 163:120-127.
  • Nair V, Panigrahy A, Vinu R, 2014. Development of novel chitosan–lignin composites for adsorption of dyes and metal ions from wastewater. Chemical Engineering Journal 254:491-502.
  • Pavithra S, Thandapani G, Sugashini S, Sudha PN, Alkhamis HH, Alrefaei AF, Almutairi MH, 2021. Batch adsorption studies on surface tailored chitosan/orange peel hydrogel composite for the removal of Cr (VI) and Cu (II) ions from synthetic wastewater. Chemosphere 271:129415.
  • Sahin M, Gubbuk IH, Kocak N, 2012. Synthesis and characterization of sporopollenin-supported schiff bases and ruthenium (III) sorption studies. Journal of Inorganic and Organometallic Polymers and Materials, 22(6):1279-1286.
  • Sevgi, F, Bagkesici U, Kursunlu AN, Guler E, 2018. Fe (III), Co (II), Ni (II), Cu (II) and Zn (II) complexes of schiff bases based-on glycine and phenylalanine: Synthesis, magnetic/thermal properties and antimicrobial activity. Journal of Molecular Structure 1154:256-260.
  • Sutirman ZA, Rahim EA, Sanagi MM, Abd Karim KJ, Ibrahim WAW, 2020. New efficient chitosan derivative for Cu (II) ions removal: characterization and adsorption performance. International Journal of Biological Macromolecules 153:513-522.
  • Tang CJ, Chen X, Feng F, Liu ZG, Song YX, Wang YY, Tang X, 2021b. Roles of bacterial cell and extracellular polymeric substance on adsorption of Cu (II) in activated sludges: A comparative study. Journal of Water Process Engineering 41:102094.
  • Tang L, Gou S, He Y, Liu L, Fang S, Duan W, Liu T, 2021a. An efficient chitosan-based adsorption material containing phosphoric acid and amidoxime groups for the enrichment of Cu (II) and Ni (II) from water. Journal of Molecular Liquids 331:115815.
  • Tural S, Ece MŞ, Tural B, 2018. Synthesis of novel magnetic nano-sorbent functionalized with N-methyl-D-glucamine by click chemistry and removal of boron with magnetic separation method. Ecotoxicology and environmental safety 162:245-252.
  • Ünlü N, Ersoz M, 2007. Removal of heavy metal ions by using dithiocarbamated-sporopollenin. Separation and Purification Technology 52(3):461-469.
  • Wang, Y, Wang, X, Ding, Y, Zhou, Z, Hao, C, Zhou, S, 2018. Novel sodium lignosulphonate assisted synthesis of well dispersed Fe3O4 microspheres for efficient adsorption of copper (II). Powder Technology, 325:597-605.
  • Yang H, Bai L, Wei D, Yang L, Wang W, Chen H, Xue Z, 2019. Ionic self-assembly of poly (ionic liquid)-polyoxometalate hybrids for selective adsorption of anionic dyes. Chemical Engineering Journal, 358, 850-859.
  • Yu Z, Song W, Li J, Li Q, 2020. Improved simultaneous adsorption of Cu (II) and Cr (VI) of organic modified metakaolin-based geopolymer. Arabian Journal of Chemistry 13(3):4811-4823.
  • Zhang H, Omer AM, Hu Z, Yang LY, Ji C, Ouyang XK, 2019. Fabrication of magnetic bentonite/carboxymethyl chitosan/sodium alginate hydrogel beads for Cu (II) adsorption. International journal of biological macromolecules 135:490-500.