Refrakter Yalıtım Malzemesi Üretiminin Deneysel Olarak Araştırılması

Silis dumanı yüksek sıcaklık ürünü seramik bir malzemedir. Endüstriyel bir atık olan silis dumanına bu özelliği refrakter yapısı kazandırmaktadır. Endüstriyel atıklar tüm dünyada olduğu gibi ülkemizde de küçümsenmeyecek miktarlarda çevresel problemlere sebep olmaktadır. Bu atıkların değerlendirilmesi çevre problemlerinin çözümüne ve ekonomik girdilere katkı sağlamaktadır. Bu çalışmada, endüstriyel refrakter atık bir malzeme olan silis dumanı termal yalıtım malzemesi üretiminde kullanılmıştır. Üretilen yalıtım tuğlasında, silis dumanı, sönmüş kireç ve su kullanılmıştır. Tuğla macunu, silis dumanı atıkları, su ve kireç farklı ağırlık oranlarında karıştırılmak suretiyle kullanılmıştır. Üretilen ısı yalıtım malzemesinin özelliklerini değerlendirmek için, elde edilen tuğlanın fiziksel, mekanik ve mikro yapı özellikleri test edilmiştir. Bağlayıcılık oranına göre 1.2 oranında silis dumanı katılan tuğla düşük yoğunluk ve yüksek mekanik mukavemet bakımından iyi özellikler göstermiştir.

Experimental Investigation of Refractory Insulation Material Production

The silica fume which is the high temperature product is a ceramic material. A refractory structure gives that feature to the silica fume which is an industrial waste. Industrial wastes cause environmental problems in quantities that cannot be underestimated in our country as it is in the whole world. The utilization of these wastes contributes to the solution of environmental problems and to economic inputs. In this study, the silica fume which is an industrial refractory waste was used in thermal insulation material production. Silica fume, slaked lime and water were used in the insulation brick produced. The brick paste was prepared by mixing silica fume wastes, water and lime at different weight ratios. The physical, mechanical and microstructural properties of the produced brick were tested to evaluate the properties of the manufactured insulation material. According to the binder ratio, the brick which silica fume added in 1.2 ratio showed good properties in terms of low density and high mechanical strength.

___

  • Abo-El-Enein SA, Abou-Gamra ZM, El-Hosiny EL, El-Gamal SMA, 1996 Characteristics of Lime-Silica Fume Mixa Tram. Journal of Thermal Analysis, 46: 275-284.
  • Al-Homoud Mohammad, S. 2005 Performance Characteristics and Practical Applications of Common Building Thermal Insulation Materials. Building and Environment, 40, 353-366.
  • Al-Zaidi AKA, Demirel B, Atis CD, 2019. Effect of Different Storage Methods on Thermal And Mechanical Properties of Mortar Containing Aerogel, Fly Ash and Nano-Silica, Construction and Building Materials, 199:501-507.
  • Anonim, 2010a. Beton-Sertleşmiş Beton Deneyleri-Bölüm 3: Deney Numunelerinde Basınç Dayanımının Tayini, TS EN 12390-3, Ankara.
  • Anonim, 2010b. Beton-Sertleşmiş beton deneyleri - Bölüm 5: Deney Numunelerinde Eğilme Dayanımının Tayini, TS EN 12390-5, Ankara.
  • Anonim, 2012. Beton Deneyleri - Bölüm 4: Ultrasonik Atımlı Dalga Hızının Tayini, TS EN 12504-4, Ankara.
  • Anonim, 2013. Agregaların mekanik ve fiziksel özellikleri için deneyler - Bölüm 6: Tane yoğunluğunun ve su emme oranının tayini, TS EN 1097-6, Ankara.
  • Anonymous, 1987. Silica Fume in Concrete. AC Committe 226, ACI Material Journal, 84: 158-166.
  • Anonymous, 1996. Building Components and Building Elements-Thermal Resistance and Thermal Transmittance, EN ISO 6946. Calculation Method, DIN, Berlin.
  • Anonymous, 2000a. Classification of The Reactionto Fire Performance of Construction Products, 89/106/EC/147, Council Directive, Official Journal of The European Communities.
  • Anonymous, 2000b. Thermal Insulation Products for Building. Factory Made Mineral Wool (Mw) Products, EN 13162. Specification, DIN, Berlin.
  • Anonymous, 2001a. Thermal Insulation Products for Buildings, Factory Made Products of Expanded Posystyrene (EPS), EN 13163. Specification, DIN, Berlin.
  • Anonymous, 2001b. Thermal Insulation Products for Buildings, Factory Made Products of Extruded Posystyrene (XPS), EN 13164, Specification, DIN, Berlin.
  • Anonymous, 2003. Data from Publications and the Web-site of the European Association of Mineral Wool Producers. http://www.eurima.org. (Date of access: 16 Octeber 2018).
  • Anonymous, 2006. Environmental Labels and Declarations, ISO 14025-00. Type III. Environmental Declarations, Technical Report, ASTM International.
  • Arun NG, Sandeep S, 2016. Effects of Silica Fume (Micro Silica or Nano Silica) on Mechanical Properties of Concrete: A Review, International Journal of Civil Engineering and Technology, 7:345–357.
  • Cohen MD, Bentur A, 1988. Durability of Portland Cement-Silica Fume Pastes in Magnesium Sulfateand Sodium Sulfate Solutions. ACI Material Journal, 85(3): 148-157.
  • Diamond S, 1986. The Microstructures of Cement Paste in Concrete. In: Proceedings of the VIII. Congress on Cement Chemistry, Rio deJaneiro, Brazil, 122-147.
  • Gleize PJP, Müller A, Roman H. R, 2003. Microstructural Investigation of a Silica Fume-Cement-Lime Mortar. Cement and Concrete Composites, 25(2): 171-175.
  • Hijorth L, 1983. Development and Application of High-Density Cement-Based Materials. Philosophical Transactions of the Royal Society, A. 310(1511): 167-173.
  • Holland T. C, 2005. Silica Fume User's Manual, Silica Fume Association. Free Highway Association, FHWA-IF-05-016, USA.
  • Huang Y, Gong L, Shi L, Cao W, Pan Y, Cheng X, 2018. Experimental Investigation on the Influencing Factors of Preparing Porous Fly Ash-Based Geopolymer for Insulation Material. Energy and Buildings, 168: 9-18.
  • Jennings H, 2008. Refinements to Colloidal Model of C-S-H in Cement: CM-II. Cement and Concrete Research, 38(3): 275-289.
  • Júlio MF, Soares A, Ilharco LM, Flores-Colen I, Brito J, 2016. Aerogel Based Renders with Lightweight Aggregates: Correlation Between Molecular/Pore Structure and Performance, Construction and Building Materials, 124:485-495.
  • Koca C, 1996. Yüksek Performanslı Beton Üretiminde Mikrosilis, Curuf, Klinker Karışımı Çimento Kullanımı. 4.Ulusal Beton Kongresi Beton Teknolojisinde Mineral ve Kimyasal Katkılar Bildiri Kitabı, TMMOB İnşaat Mühendisleri Odası, İstanbul, s. 381-394.
  • Malhotra VM, Mehta PK, 1996. Pozzolanic and Cementitious Materials. Advances in Concrete Technology, Vol. 1. Overseas Publishers Association. Ottowa, Canada, USA.
  • Mukhopadhyay M, 2000. Advances in Refractory Materials Indian Scenario and Challange for Future. Refractories and Furnaces, Allied Publishers Limited. New Delhi, India.
  • Muller ACA, Scrivener KL, Skibsted J, Gajewicz A. M, 2015. Influence of Silica Fume on The Microstructure of Cement Pastes: New Insights From H NMR Relaxometry. Cementand Concrete Research, 74: 116-125.
  • Liu XH, Lv XD, Fu JX, Peng P, Gai GS, 2009. Application of Silica Fume in China Advanced Materials Research, 58:21-26.
  • Papadopoulos AM, 2005. State of the Art in Thermal Insulation Materials and Aims for Future Developments. Energy and Buildings, 37 (1): 77-86.
  • Petch HE, 1961. The Hydrogen Positions in Portlandite, Ca(OH)2, As Indicated by the Electron Distribution, Acta Crystallographica,14(9): 950-957.
  • Rodrigues F, Evangelista L, Brito J, 2016. A New Method to Determine the Density and Water Absorption of Fine Recycled Aggregates, Materials Research, 16:1045–1051.
  • Sedlbauer K, Koenig Sind N, 1998. Are Measures Needed to Reduce the Risks of Artificial Mineral Fibers and What are the Alternatives?, Wksb Heft, 42: 33-39.
  • Samiha Ramdani S, Guettala A, Benmalek ML, Aguiar JB, 2019. Physical and mechanical performance of concrete made with waste rubber aggregate, glass powder and silica sand powder, Journal of Building Engineering, 21:302-311.
  • Şimşek O, 2007. Beton Bileşenleri ve Beton Deneyleri. Seçkin Yayınları, s.17-307, Ankara, Türkiye.
  • Taylor HFW, 1992. Cement chemistry. 2nd ed. Academic Press. London, England.
  • Zhaoab Z, Qua X, Lib F, Weib J, 2018. Effects of Steel Slag and Silica Fume Additions on Compressive Strength and Thermal Properties of Lime-Fly Ash Pastes. Construction and Building Materials, 183: 439-450.