Ratlarda Sisplatin Kaynaklı Akciğer Toksisitesi Üzerine Oksidatif/Nitrozatif Stres Parametrelerinin ve Histopatolojik, İmmünohistokimyasal Etkilerin Değerlendirilmesi

Bu çalışmanın ana odak noktası, sisplatin kaynaklı akciğer toksisitesinde oksidatif/nitrozatif stres ve antioksidan etkiler ile immünohistokimyasal etkileri araştırmaktır. Çalışmada 2 aylık 12 Sprague Dawley erkek rat kontrol (n=6) ve sisplatin (n=6) olmak üzere iki gruba ayrıldı. Kontrol grubuna izotonik solüsyon, sisplatin grubuna sisplatin 10 mg/kg tek doz intraperitoneal uygulandı. Alınan akciğer dokularında redükte glutatyon (GSH), malondialdehit (MDA) ve nitrik oksit (NO) seviyeleri spektrofotometrik yöntemle belirlendi. Akciğer dokularından parafin bloklar yapıldı ve hematoksilen-eozin (HE) boyama ile boyandı. İmmünohistokimyasal olarak p53, CD3, CD20, Bcl-2 ve Ki67 değerlendirildi. Sıçanların akciğer dokusunda tek başına sisplatin uygulamasının MDA ve GSH değerleri üzerine etkisinin olmadığı, NO düzeylerinin anlamlı olarak arttığı bulundu (P<0.005). Akciğer dokusunun histopatolojik değerlendirmesinde HE boyama ile konjesyon-kanama bulguları, yoğun inflamasyon alanları, bronş ve bronşiyol çevresinde lenfoid foliküller görüldü. Alveoller arasında düşük yoğunluklu ödem ile hava yollarında kan-fibrin ve enflamatuar hücreler ve fibroblastlardan oluşan konsantrik fibröz ve fibrinöz tıkaçlar gözlendi. Reaktif pan B hücre belirteçleri CD20, interstisyel bileşende T-hücre belirteci CD3 ve subepitelyal hücrelerde desmin immünohistokimyasal boyama ile pozitif boyanırken, bronşiyoller ve alveolar kanallara uygulanan reaktif germinal merkezler Bcl-2 ve p53 immünohistokimyasal olarak negatif boyandı. Ayrıca Ki67 immünohistokimyasal boyama ile düşük yoğunluklu nükleer boyanma saptandı. Sonuç olarak NO düzeyinde anlamlı artış ve immünohistokimyasal olarak yoğun inflamasyon, lenfoid foliküller, fibröz ve fibrnöz tıkaçlar sisplatin kaynaklı akciğer hasarı başlangıcının bir ifadesidir.

Evaluation of Oxidative/Nitrosative Stress Parameters and Histopathological, Immunohistochemical Effects on Cisplatin-Induced Lung Toxicity in Rats

The main focus of this study is to investigate oxidative/nitrosative stress and antioxidant effects and immunohistochemical effects in cisplatin-induced lung toxicity. In the study, 12 male Sprague Dawley rats, 2 months old, were divided into two groups: control (n=6) and cisplatin (n=6). Isotonic solution was administered to control and cisplatin 10 mg/kg single dose intraperitoneal to cisplatin group. Reducte glutathione (GSH), malondialdehyde (MDA) and nitric oxide (NO) levels were determined by spectrophotometricmethod in the lung tissues taken. Paraffin blocks were made from lung tissues and stained with hematoxylin-eosin (HE) staining. Immunohistochemically, p53, CD3, CD20, Bcl-2 ve Ki67 were evaluated. It was found that cisplatin administration alone had no effect on MDA and GSH values in the lung tissue of rats, and NO levels were significantly increased (P<0.005). In the histopathological evaluation of the lung tissue, congestion-bleeding findings, intense inflammation areas, lymphoid follicles around the bronchi and bronchioles were seen with HE staining. Concentric fibrous and fibrinous plugs consisting of blood-fibrin and inflammatory cells and fibroblasts in the airways were observed, with low-density edema between the alveoli. Reactive pan B cell markers CD20, T-cell marker CD3 in the interstitial component and desmin in sub-epithelial cells were stainedpositively by immunohistochemical staining, while reactive germinal centers Bcl-2 and p53 applied to the bronchioles and alveolarducts were immunohistochemically stained negative. In addition, low-intensity nuclear staining was found with Ki67 immunohistochemical staining.In conclusion, significant increase in NO level and immunohistochemically intense inflammation, lymphoid follicles, fibrous and fibrinous plugs are an expression of the onset of cisplatin-induced lung injury..

___

  • Afsar, T., Razak, S., Almajwal, A., & Khan, M.R., (2018). Acacia hydaspica R. Parker ameliorates cisplatin induced oxidative stress, DNA damage and morphological alterations in rat pulmonary tissue. BMC Complement. Altern. Med., 18(1): 49. https://doi: 10.1186/s12906-018-2113-0
  • Ali, B.H., & Al Moundhri, M.S., (2006). Agents ameliorating or augmenting the nephrotoxicity of cisplatin and other platinum compounds: a review of some recent research. Food Chem. Toxicol., 44(8): 1173-1183. https://doi: 10.1016/j.fct.2006.01.013.
  • Atakisi, O., Dalginli, K. Y., Gulmez, C., Kalacay, D., Atakisi, E., Zhumabaeva, T. T., Aşkar, T. K., & Demirdogen, R. E. (2022). The role of reduced glutathione on the activity of adenosine deaminase, antioxidative system, and aluminum and zinc levels in experimental aluminum toxicity. Biological trace element research, 10.1007/s12011-022-03503-0. Advance online publication. https://doi.org/10.1007/s12011-022-03503-0.
  • Beutler, E., Duron, O., & Kelly, B.M., (1963). Improved method for the determination of blood glutathione. J. Lab. Clin. Med.,. 61: 882-888.
  • Bradford, M.M., (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal.Biochem., 72: 248-254. https://doi: 10.1006/abio.1976.9999
  • Dasari, S., & Tchounwou, P.B., (2014). Cisplatin in cancer therapy: molecular mechanisms of action. Eur. J. Pharmacol., 5(740): 364-378.https://doi: 10.1016/j.ejphar.2014.07.025.
  • Faid, S.M., (2020). Potential protective role of Melilotus officinalis extract against Cisplatin-induced cardiac and pulmonary toxicities in rats. African J. Biol. Sci., 16(1): 233-244.
  • Geyikoglu, F., Isikgoz, H., Onalan, H., Colak, S., Cerig, S., Bakir, M., Hosseinigouzdagani, M., Koc, K., Erol, H.S., Saglam, Y.S., & Yildirim, S., (2017). Impact of high-dose oleuropein on cisplatin-induced oxidative stress, genotoxicity and pathological changes in rat stomach and lung. J. Asian Nat. Prod.Res., 19(12): 1214–1231. https://doi: 10.1080/10286020.2017.1317751
  • Gulmez, C., Dalginli, K.Y., Atakisi, E., & Atakisi, O., (2020). the protective effect of lactoferrin on adenosine deaminase, nitric oxide and liver enzymes in lipopolysaccharide-induced experimental endotoxemia model in rats. Kafkas Univ. Vet. Fak. Derg., 26(6): 801-806. doi:10.9775/kvfd.2020.24504
  • Halliwell, B., & Chirico, S., (1993). Lipid peroxidation: its mechanism, measurement, and significance. Am. J. Clin. Nutr., 57(5): 715S-725S. https://doi.org/10.1093/ajcn/57.5.715S
  • Han, Y.K., Kim, J.S., Jang, G.B., & Park, K.M., (2021). Cisplatin induces lung cell cilia disruption and lung damage via oxidative stress. Free Radic. Biol. Med., 177:270-277. https://doi: 10.1016/j.freeradbiomed.2021.10.032
  • Hosseinian, S., Rad, A.K., Mousa-Al-RezaHadjzadeh, N.M., Roshan, S.H., & Shafiee, S., (2016). The protective effect of nigella sativa against cisplatin-induced nephrotoxicity in rats. Avicenna J. Phytomed., 6(1): 44.
  • Iwasaki, Y., Nagata, K., Nakanishi, M., Natuhara, A., Kubota, Y., Ueda, M., Arimoto, T., & Hara, H., (2005). Double-cycle, high-dose ifosfamide, carboplatin, and etoposide followed by peripheral blood stem-cell transplantation for small cell lung cancer. Chest., 128(4): 2268-2273.
  • Kart, A., Koc, E., Dalginli, KY., Gulmez, C., Sertcelik, M., & Atakisi, O., (2016). The therapeutic role of glutathione in oxidative stress and oxidative DNA damage caused by hexavalent chromium. Biol. Trace Elem. Res., 174(2): 387-391. https://doi: 10.1007/s12011-016-0733-0
  • Khan, R., Khan, A.Q., Qamar, W., Lateef, A., Ali, F., Rehman,MU., Tahir, M., Sharma,S., & Sultana,S., (2012). Chrysin abrogates cisplatin-induced oxidative stress, p53 expression, goblet cell disintegration and apoptotic responses in the jejunum of Wistar rats. Br. J. Nutr., 108(9): 1574-1585.https://doi: 10.1017/S0007114511007239
  • Kopke, R.D., Liu, W., Gabaizadeh, R., Jacono, A., Feghali, J., Spray, D., Garcia, P., Steinman, H., Malgrange, B., Ruben, R. J., Rybak, L., & Van de Water, T.R., (1997). Use of organotypic cultures of Corti's organ to study the protective effects of antioxidant molecules on cisplatin-induced damage of auditory hair cells. Am. J. Otol., 18(5): 559-571.
  • Kosmas, C., Tsavaris, N.B., Malamos, N.A., Vadiaka, M., & Koufos, C., (2001). Phase II study of paclitaxel, ifosfamide, and cisplatin as second-line treatment in relapsed small-cell lung cancer. J. Clin. Oncol., 19(1): 119-126. https://doi: 10.1200/JCO.2001.19.1.119
  • Leo, F., Pelosi, G., Sonzogni, A. Chilosi, M., Bonomo, G., & Spaggiari, L., (2010). Structural lung damage after chemotherapy: fact or fiction? Lung Cancer, 67(3): 306-310. https://doi: 10.1016/j.lungcan.2009.04.013
  • Miranda, K.M., Espey, M.G., & Wink, D.A., (2001). A rapid, simple spectrophotometric method for simultaneous detection of nitrate and nitrite. Nitric Oxide,5:62-71. https://doi: 10.1006/niox.2000.0319
  • Rabik, C.A., & Dolan, M.E., (2007). Molecular mechanisms of resistance and toxicity associated with platinating agents. Cancer Treat. Rev., 33(1): 9-23. https://doi: 10.1016/j.ctrv.2006.09.006
  • Ristić, L., Rančić, M., Radović, M., Krtinić, D., Pavlović, M., Ilić, B., Milojković, M., Živković, N., Turković, K., & Sokolović, D., (2020). Melatonin inhibits apoptosis and oxidative tissue damage in cisplatin-induced pulmonary toxicity in rats. Arch. Med. Sci., https://doi.org/10.5114/aoms.2020.95952
  • Rosenberg, B., Vancamp, L., & Krigas, T., (1965). Inhibition of cell division in escherichia coli by electrolysis products from a platinum electrode. Nature, 205: 698-699. https://doi: 10.1038/205698a0
  • Unver, E., Tosun, M., Olmez, H., Kuzucu, M., Cimen, F. K., & Suleyman, Z., (2019). The effect of taxifolin on cisplatin-induced pulmonary damage in rats: a biochemical and histopathological evaluation. Mediators Inflamm., 3740867. https://doi: 10.1155/2019/3740867. eCollection 2019
  • Waissbluth, S., Peleva, E., & Daniel, S.J., (2017). Platinum-induced ototoxicity: a review of prevailing ototoxicity criteria. Eur. Arch. Otorhinolaryngol., 274(3): 1187-1196. https://doi: 10.1007/s00405-016-4117-z
  • Weijl, N.I., Cleton, F.J., &Osanto, S., (1997). Free radicals and antioxidants in chemotherapy-induced toxicity. Cancer Treat Rev., 23:209-240. https://doi: 10.1016/s0305-7372(97)90012-8
  • Weijl, N.I., Hopman, G.D., Wipkink-Bakker, A., Lentjes, E.G., Berger, H.M., Cleton, F.J., & Osanto, S., (1998). Cisplatin combination chemotherapy induces a fall in plasma antioxidants of cancer patients, Ann. Oncol., 9(12): 1331-1337. https://doi: 10.1023/a:1008407014084
  • Yang, Q. Sun. G., Yin, H., Li H., Cao, Z., Wang, J., Zhou M., Wang, H., & Li J., (2018). PINK1 protects auditory hair cells and spiral ganglion neurons from cisplatin-induced ototoxicity via inducing autophagy and inhibiting JNK signaling pathway. Free Radic. Biol. Med., 120:342-355, https://doi.org/10.1016/j.freeradbiomed.2018.02.025
  • Yildiz Dalginli K., Gulmez, C., Atakisi, E., & Atakisi, O., (2022). Lactoferrın modulates increased liver DNA damage by reducing serum cytokine, hepcidin and iron levels in lipopolysaccharide-induced endotoxemia in rats. Studia Univ. Babes-Bolyai. Chemia., 67(1): 165-176.
  • Yoshoiko, T., Kawada, K., Shimada, T., & Mori, M., (1979). Lipid peroxidation in maternal and cord blood and protective mechanism aganist activedoxygen toxicity in the blood. Am. J. Obstet. Gynecol., 135: 372-376. https://doi: 10.1016/0002-9378(79)90708-7.
Iğdır Üniversitesi Fen Bilimleri Enstitüsü Dergisi-Cover
  • ISSN: 2146-0574
  • Yayın Aralığı: Yılda 4 Sayı
  • Başlangıç: 2011
  • Yayıncı: -