Çoklu Yansıma Ortamlarında Geniş Menzilli Hedeflerin Uyarlanabilir Radar Tespiti

Bu makalede, Gauss gürültüsü altında gömülü geniş menzilli radar hedeflerinin uyumlu algılama problemi, dağınık çoklu yol ortamı varsayımı altında ele alınmıştır. Her aralık hücresinden hedef yankısı, doğrudan yol bileşenini hesaba katan bilinmeyen bir ölçek faktörüyle belirlenen belirli bir veri vektörü ve bir parlak yüzeyin çoklu yankılarını temsil eden bilinmeyen bir kovaryans matrisiyle Gaussian dağılımlı rastgele veri vektörünün toplamı olarak modellemiştir. Tasarım aşamasında, her birincil veri kovaryans matrisi, ikincil veri seti ile elde edilen örnek bir kovaryans matrisi çevresinde yer aldığı varsayılır. Adaptif tespit problemi için bir kısıttlı Genelleştirilmiş Olasılık Oranı Testi (GLRT) ele alınmıştır. Geliştirilen algoritmanın, literatürdeki iyi bilinen adaptif dedektörlerle performans analizi yapılmıştır. Sunulan sonuçlar ve performans analizi, önerilen yaklaşımın yayılmış çoklu yol varlığı olan ortamlarda geniş menzilli radar hedeflerinin tespit performansını artırdığını vurgulamaktadır.

Adaptive Radar Detection of Extended Targets in Diffuse Multipath Environments

This paper discusses the adaptive detection of extended radar targets buried in Gaussian clutter, assuming a diffuse multipath environment. The target return signal from each range cell is modeled as the sum of a deterministic data vector, which includes an unknown scaling factor representing the direct path component, and a randomly distributed data vector in a Gaussian distribution with unknown covariance matrix representing multipath echoes. During the design phase, it is assumed that the primary data covariance matrix falls within the vicinity of a sample covariance matrix that is devised from the secondary data set. The paper proposes a constraint Generalized Likelihood Ratio Test (GLRT) for the adaptive detection problem of extended radar targets in diffuse multipath environments, and conducts a performance analysis comparing the developed algorithm with well-known adaptive detectors in the literature. The results and performance analysis demonstrate that the proposed approach enhances the detection performance of extended radar targets in environments with diffuse multipath. Overall, this article provides valuable insights for improving the adaptive detection of extended targets in challenging environments, with potential applications in radar and sensing technologies.

___

  • A. D. Pamela and O. W. David, “Performance analysis of the incoherent and skewness matched filter detectors in multipath environments,” IEEE J. Ocean. Eng., vol. 20, no. 1, pp. 80–84, Jan. 1995.
  • M. A. Richards, J. A. Scheer and W. A. Holm, Principles of Modern Radar Volume I: Basic Principles, Edison, NJ, USA:SciTech, 2010.
  • Fertig, L.B.; Baden, M.J.; Kerce, J.C.; Sobota, D. “Localization and tracking with Multipath Exploitation Radar”, In Proceedings of the 2012 IEEE Radar Conference, Atlanta, GA, USA, 7–11 May 2012; pp. 1014–1018.
  • K. Gerlach and M. J. Steiner, “Adaptive detection of range distributed targets,” IEEE Trans. Signal Process., vol. 47, no. 7, pp. 1844–1851, Jul. 1999.
  • R. L. Fante, "Cancellation of specular and diffuse jammer multipath using a hybrid adaptive array", IEEE Trans. Aerosp. Electron. Syst, vol. 27, no. 5, pp. 823-837, 1991.
  • R. L. Fante and J. A. Torres, "Cancellation of diffuse jammer multipath by an airborne adaptive radar", IEEE Trans. Aerosp. Electron. Syst, vol. 31, no. 2, pp. 805-820, 1995.
  • A. Aubry, J. Carretero-Moya, A. De Maio, A. Pauciullo, J. Gismero-Menoyo, and A. Asensio-Lopez, “Detection of Extended Target in Compound-Gaussian Clutter,” in Modern Radar Detection Theory, IET A. De Maio and M. S. Greco, Eds., number chapter 9, pp. 333–374. Scitech Publishing, 2016.
  • M. Tang, Y. Rong, J. Zhou, and X. R. Li, “Invariant adaptive detection of range-spread targets under structured noise covariance,” IEEE Trans. Signal Process., vol. 65, no. 12, pp. 3048–3061, Jun. 2017.
  • C. G.Bachman, ”Some recent developments in RCS measurement techniques”, Proc. IEEE, Vol. 53, No. 8, pp. 208-216, 1965.
  • E. Conte, A. De Maio and G. Ricci, “GLRT-based adaptive detection algorithms for range-spread targets”, IEEE Trans. Signal Process., Vol. 49, No. 7, pp. 1336-1348, 2001.
  • E. Conte, A. De Maio and G. Ricci, “CFAR detection of distributed targets in non-Gaussian disturbance”, IEEE Trans. Aerosp. Electron. Sys., Vol. 38, No. 2, pp. 612-621, 2001.
  • A. Aubry, A. De Maio, L. Pallotta and A. Farina, “Radar detection of distributed targets in homogeneous interference whose inverse covariance structure is defined via unitary invariant functions”, IEEE Trans. Signal Process., Vol. 61, No. 20, pp. 949-49618, 2013.
  • Hayvaci, H.T.; De Maio, A.; Erricolo, D. Improved detection probability of a radar target in the presence of multipath with prior knowledge of the environment. IET Radar Sonar Navig. 2013, 7, 36–46.
  • Kumbul, U.; Hayvaci, H.T. Multipath exploitation for knowledge-aided adaptive target detection. IET Radar Sonar Navig. 2019, 13, 863–870.
  • Yilmaz, S.H.G.; Zarro, C.; Hayvaci, H.T.; Ullo, S.L. Adaptive waveform design with multipath exploitation radar in heterogeneous environments. Remote Sens. 2021, 13, 1628.
  • S. Kraut, L. L. Scharf and L. T. McWhorter. “Adaptive subspace detectors”, IEEE Trans. Signal Process. Vol. 49, No. 1, pp. 1-16, 2001.
  • F. Bandiera, A. De Maio, A.S. Greco and G. Ricci, “Adaptive radar detection of distributed targets in homogeneous and partially homogeneous noise plus subspace interference”, IEEE Trans. Signal Process., Vol. 55, No. 4, pp. 1223-1237, 2007.
  • R. L. Fante, “Cancellation of specular and diffuse jammer multipath using a hybrid adaptive array”, IEEE Trans. Aerosp. Electon. Syst., vol. 27, no. 5, pp. 823-837, 1991.
  • A. Aubry, A. De Maio, G. Foglia and D. Orlando, “Diffuse multipath exploitation for adaptive radar detection”, IEEE Trans. Signal Process., Vol. 63, No. 5, pp. 1268-1281, 2015.
  • E. J. Kelly, “An adaptive detection algorithm”, IEEE Trans. Aerosp. Electron. Syst., vol. 22, no. 1, pp. 115-127, 1986.
  • F. C. Robey, D. R. Fuhrmann, E. J. Kelly, R. Nitzberg, “A CFAR adaptive matched filter detector”, IEEE Trans. Aerosp. Electron. Syst., vol. 28, no. 1, pp. 208-216, 1992.
  • S. Barbarossa and A. Farina, “Space-Time-Frequency Processing of Synthetic Aperture Radar Signals”, IEEE Trans. on Aerospace and Electronic Systems, vol. 30, no. 2, pp. 341-358, 1994.
Iğdır Üniversitesi Fen Bilimleri Enstitüsü Dergisi-Cover
  • ISSN: 2146-0574
  • Yayın Aralığı: Yılda 4 Sayı
  • Başlangıç: 2011
  • Yayıncı: -
Sayıdaki Diğer Makaleler

Çoklu Yansıma Ortamlarında Geniş Menzilli Hedeflerin Uyarlanabilir Radar Tespiti

Harun Taha HAYVACİ

Comparison of Ca-Based Commercial and Natural Catalysts Performance on Olive Pomace Pyrolysis Process

Gamze GÖKTEPELİ, Esra YEL

Tatlı Patates ve Gölevezin Bazı Biyoaktif Bileşenleri: Bitki Organlarına Dayalı Karşılaştırmalı Bir Çalışma

Berk Can YILDIZ, Emir Furkan DEMİR, Fatih HANCI

Fabrication of Highly Efficient Fe3O4/SSIP/GO Composite Films for Removal of Methylene Blue Dye

Mehmet Salih NAS, Mehmet Harbi ÇALIMLI, Özkan DEMİRBAŞ

Ekmeklik Buğday (Triticum aestivum L.) Genotiplerinin Dane Verimi ve Bazı Önemli Kalite Özellikleri için Trakya Bölgesinde Bulunan Farklı Çevrelerde Testlenmesi

Halil İbrahim GÖKDERE, Ali Baran YILMAZ, Mehmet TEKİN, Mehmet Zahit YEKEN, Vahdettin ÇİFTÇİ

Determination of Antioxidant Activity of The Leaves of Hawthorn (Crataegus Monogyna)

Emrah DİKİCİ, Ekrem KÖKSAL

Picris L. (Asteraceae) Cinsine Ait Beş Türün Polen Morfolojisi

Hanife AKYALÇIN, Kadir UÇAN

Istranca (Yıldız) Dağları, Kırklareli / Dereköy Bölgesinde Ornitolojik Gözlemler

Mustafa KAYA

Phycoremediation of Thallium Toxic Metal Present in Gallery Water of an Abandoned Mine Area by Algae Cladophora fracta

Murat TOPAL, Emine Işıl ARSLAN TOPAL, Erdal ÖBEK

Anamur, Bozyazı ve Aydıncık (Mersin-Türkiye)’daki Bazı Doğal Sit Alanlarının Flora ve Genel Vejetasyon Yapısının İncelenmesi

Ahmet Zafer TEL, İshak ORTAÇ, Ergün ÖZUSLU, Ahmet İLÇİM