Protective Role of Putrescine against Picloram Induced Genomic Instability and DNA Methylation in Phaseolus vulgaris

Pikloram (4-amino-3-5-6-trikloropikolinik asit) önemli bir sentetik oksin olup, tarımda en çok kullanılan herbisitlerden biridir. Pikloram kullanımı, ekosistem ve insan sağlığı için potansiyel bir tehlike oluşturmaktadır. Bir poliamin çeşidi olan putresinin bitki metabolizmasında; membran stabilitesinin korunması, serbest radikallerin uzaklaştırılması ve nükleik asit ve protein sentezi gibi rolü vardır. Bu çalışma, pikloram uygulanan Phaseolus vulgaris' teki DNA hasar düzeyleri ve DNA metilasyon değişiklikleri ile putresinin bu değişimler üzerinde koruyucu etkisinin olup olmadığının belirlenmesini amaçlamıştır. DNA hasar düzeylerini ve DNA metilasyon değişimlerini belirlemek için Rastgele Çoğaltılmış Polimorfik DNA (RAPD) ve Çift Restriksiyon Enzim KesimiRastgele Çoğaltım (CRED-RA) kullanılmıştır. Sonuçlar, tüm pikloram dozlarının (5, 10, 20 ve 40 mg L-1) RAPD profil değişikliklerini (DNA hasarının) artırdığını ve Genomik Kararlılık Stabilitesini (GTS) azalttığını ve ayrıca DNA hipometilasyonunun oluştuğunu göstermiştir. Bununla birlikte, kullanılan tüm putresin konsantrasyonları (0.01, 0.1 ve 1 ppm) pikloramın bu zararlı etkilerini azaltmıştır. Sonuç olarak, putresin, bitkilerdeki kimyasal mutajenlere karşı genotoksik hasarı azaltmak için bir alternatif olabilir

Phaseolus vulgaris’te Genomik Kararsızlık ve DNA Metilasyonunu İndükleyen Piklorama karşı Putresinin Koruyucu Rolü

Picloram (4-amino-3-5-6-trichloropicolinic acid) is an important synthetic auxin and it is one of the most widely used herbicides in agriculture. The use of picloram is representing a potential hazardous to ecosystems and the human health. Putrescine is a kind of polyamine which has a role in plant metabolism such as protecting membrane stability, removing free radicals and nucleic acid and protein synthesis, etc. In this study, DNA damage levels in Phaseolus vulgaris treated with picloram, DNA methylation changes and whether putrescine was any alleviative impact on these alterations were investigated. DNA methylation pattern changes and DNA damage levels were determined by using Randomly Amplified Polymorphic DNA (RAPDs) and Coupled Restriction Enzyme Digestion-Random Amplification (CRED-RAs). The obtained results indicated that all doses of picloram (5, 10, 20 and 40 mg L-1) had a negative effect on RAPDs profile changes (increased DNA damage levels) and decreased of Genomic Template Stability (GTS) and also DNA hypomethylation was seen. However, all concentrations of putrescine (0.01, 0.1 and 1 ppm) reduced these harmful effects of picloram. Consequently, putrescine can be an alternative for reducing genotoxic damage against chemical mutagens in plants

___

  • Aydin M, Arslan E, Taspinar MS, Karadayi G, Agar G, 2016. Analyses of somaclonal variation in endosperm-supported mature embryo culture of rye (Secale cereale L.). Biotechnology and Biotechnological Equipment, 30: 1082-1089.
  • Balague C, Sturtz N, Duffard R, Evangelista de Duffard AM, 2001. Effect of 2,4- dichlorophenoxyacetic acid herbicide on Escherichia coli growth, chemical composition, and cellular envelope. Environmental Toxicology, 16: 43–53.
  • Correia S, Lopes ML, Canhoto JM, 2011. Somatic embryogenesis induction system for cloning an adult Cyphomandra betacea (Cav.) Sendt. (tamarillo). Trees, 25: 1009-1020.
  • D’Agostino L, Di Pietro M, Di Luccia A, 2005. Nuclear aggregates of polyamines are supramolecular structures that play a crucial role in genomic DNA protection and conformation. FEBS Journal, 272: 3777–3787.
  • Duchnowicz P, Koter M, 2003. Damage to the erythrocyte membrane caused by chlorophenoxyacetic herbicides. Cellular and Molecular Biology Letters, 8: 25–30.
  • Feng SJ, Liu XS, Tao H, Tan SK, Chu SS, Oono Y, Zhang XD, Chen J, Yang ZM, 2016. Variation of DNA methylation patterns associated with gene expression in rice (Oryza sativa) exposed to cadmium. Plant Cell and Environment, 39: 2629-2649.
  • Grativol C, Hemerly AS, Ferreira PCG, 2012. Genetic and epigenetic regulation of stress responses in natural plant populations. Biochimica et Biophysica Acta, 1819: 176–185.
  • Khan AU, Di-Mascio P, Medeiros MHG, Wilson T, 1992. Spermine and spermidine protection of plasmid DNA against single-strand breaks induced by singlet oxygen. Proceedings of the National Academy of Science of the United States of America, 89: 11428- 11430.
  • Leljak-Levanic D, Bauer N, Mihaljevic S, Jelaska S, 2004. Changes in DNA methylation during somatic embryogenesis in Cucurbita pepo L. Plant Cell Reports, 23: 120–127.
  • Miyamoto S, Kashiwagi K, Watanabe S, Igarashi K, 1993. Estimation of polyamine distribution and polyamine stimulation of protein synthesis in Escherichia coli. Archives of Biochemistry and Biophysics, 300: 63-68.
  • Mohammed KB, Ma TH, 1999. Tradescantia-micronucleus and -stamen hair mutation assays on genotoxicity of the gaseous and liquid forms of pesticides. Mutation Research-Fundamental and Molecular Mechanisms of Mutagenesis, 426: 193-199.
  • Oakes DJ, Webster WS, Brown Woodman PDC, Ritchie HE, 2002. Testicular changes induced by chronic exposure to the herbicide formulation, Tordon 75D® (2,4-dichlorophenoxyacetic acid and picloram) in rats. Reproductive Toxicology, 16: 281-289.
  • Olea-Popelka F, Mclean DM, Horsman J, Almquist K, Bramdle JE, Hall C, 2005. Increasing expression of an anti-picloram singlechain variable fragment (ScFv) antibody and resistance to picloram in transgenic tobacco (Nicotiana tabacum). Journal of Agricultural and Food Chemistry, 53: 6683-6690.
  • Ruiz-Herrera J, Ruiz-Medrano R, Dominguez A, 1995. Selective inhibition of cytosine DNA methylases by polyamines. FEBS Letters, 357: 192-196.
  • Salvi ND, George L, Eapen S, 2001. Plant regeneration from leaf base callus of turmeric and random amplified polymorphic DNA analysis of regenerated plants. Plant Cell, Tissue and Organ Culture, 66: 113-119.
  • Sawamura S, Jackson WT, 1968. Cytological studies in vivo of picloram, pyriclor, trifluralin, 2,3,6-TBA, 2,3,5,6-TBA and nitralin. Cytologia, 33: 545–554.
  • Sung S, Amasino RM, 2004. Vernalization in Arabidopsis thaliana is mediated by the PHD finger protein VIN3. Nature, 427: 159- 164.
  • Taspinar MS, Agar G, Yildirim N, Sunar S, Aksakal O, Bozari S, 2009. Evaluation of selenium effect on cadmium genotoxicity in Vicia faba using RAPD. Journal of Food, Agriculture and Environment, 7: 857-860.
  • Temel A, Gozukirmizi N, 2013. Analysis of retrotransposition and DNA metyhlation in barley callus culture. Acta Biologica Hungarica, 64: 86-95.
  • Wang W, Qiao Q, Sun F, Wang Y, Xu D, Li Z, Fu B, 2016. Genomewide differences in DNA methylation changes in two contrasting rice genotypes in response to drought conditions. Frontiers in Plant Science, 7: 1675.
  • Yildirim N, Agar G, Taspinar MS, Turan M, Aydin M, Arslan E, 2014. Protective role of humic acids against dicamba-induced genotoxicity and DNA methylation in Phaseolus vulgaris L. Acta Agriculturae Scandinavica, Section B — Soil & Plant Science, 64: 141-148.
  • Zeid IM, Shedeed ZA, 2006. Response of alfalfa to putrescine treatment under drought stress. Biologia Plantarum, 50: 635
Iğdır Üniversitesi Fen Bilimleri Enstitüsü Dergisi-Cover
  • ISSN: 2146-0574
  • Yayın Aralığı: Yılda 4 Sayı
  • Başlangıç: 2011
  • Yayıncı: -