Polipropilen Lif ile Rastgele Donatılandırılan Bir CH Kil Zemininin Donma-Çözülme Çevrimlerinde Serbest Basınç Dayanımının Araştırılması

Katkı ve donatı malzemeleri, ince ve kaba daneli zeminlerin bazı mühendislik özelliklerini iyileştirmek amacı ile uygulamada sıkça kullanılmaktadır. Fakat sınırlı sayıdaki çalışmada ayrık polimerlifler ile donatılı ince daneli zeminler konu edilmiştir. Bu çalışmada, yüksek plastisiteli bir kil (CH) zemin içerisine rastgele dağıtılmış farklı uzunluktaki (3 mm, 6 mm ve 12 mm) polipropilen liflerin donma çözülme davranışı üzerindeki etkilerini araştırmak için laboratuvarda bir seri serbest basınç ve donma çözülme deneyleri yapılmıştır. Polipropilen lif oranı, donatılı zeminin toplam kuru ağırlığının %0.15,%0.20 ve %0.25’i olarak seçilmiştir. Bu oranlar her bir propilen lif uzunluğu için aynı seçilmiştir. Donma çözülme çevrim sayısı 1, 3, 5 ve 10 olarak alınmıştır. Yapılan deneyler sonucunda polipropilen lif uzunluğu arttıkça her bir donma-çözülme çevriminde başlangıç elastisite modülünün azaldığı belirlenmiştir. Donatılı numuneler, daha düktil bir davranış sergilemiştir. %0.15 ve %0.20 polipropilen lifle donatılandırılmış zemin numunelerinin 1, 3 ve 5 çevrim sayılarında donma-çözülme dayanımının azaldığı görülmüştür.

Investigation of Unconfined Compressive Strength in a Freezing-Thawing Cycle of a CH Clay Soil Randomly Equipped with Polypropylene Fiber

Additives and reinforcing materials are frequently used in practice with the aim ofimproving some engineering properties of fine and coarse grained soils. However, separate polymer fibersand fine-grained soils have been mentioned in some limited number of studies. In this study, a series ofunconfined compression and freeze-thaw tests were conducted in laboratory in order to investigate theeffects of polypropylene fibers of different lengths (3 mm, 6 mm, and 12 mm) dispersed in high plasticityclay (CH) randomly on freeze-thaw behaviors. Fiber percentage for each length was chosen as 0.15%,0.20%, and 0.25% of the total dry weight of the reinforced soil. Number of freeze-thaw cycles was taken as1, 3, 5, and 10. As a result of the experiments, it was determined that, the initial modulus of elasticity ofeach freeze-thaw cycle decreases as the polypropylene fiber length increases. Reinforced samples behavedmore ductile. As the number of cycles increased, freeze-thaw resistance in reinforced (0.15%-0.20%)samples decreased in general for 1-3-5 cycles.

___

  • Al Wahab RM, El-Kedrah MA, 1995. Using Polipropilen Fibers to Reduce Tension Cracks and Shrink/Swell in a Compacted Clay. Geotechnical Special Publication, 46(1): 791-805.
  • Andersland OB, Ladanyi B, 2004. Frozen Ground Engineering, 2nd edn. USA: John Wiley & Sons.
  • Ang EC, Erik LJ, 2003. Specimen Size Effects for Polipropilen Fiber-Reinforced Silty Clay in Unconfined Compression. Geotechnical Testing Journal, 26(2): 191-200.
  • ASTM D 2166. Standard Test Method For Unconfined Compressive Strength of Cohesive Soil. American Society for Testing and Materials, West Conshohocken, Pennsylvania, USA.
  • ASTM D 2487-17. Standard Practice for Classification of Soils for Engineering Purposes (Unified Soil Classification System), West Conshohocken, Pennsylvania, USA.
  • ASTM D 698-78. Fundamental Principles of Soil Compaction. American Society for Testing and Materials, West Conshohocken, Pennsylvania, USA.
  • ASTM D 4318-00, 2000. Standard Test Method for Liquid Limit, Plastic Limit, and Plasticity Index of Soils. American Society for Testing and Materials, West Conshohocken, PA.
  • Baykal G, Saygılı A, 2012. A New Technique to İmprove Freeze-Thaw Durability of Fly Ash. Fuel 102: 221-226.
  • BS 1377 Part 2 1990. Methods of Test For Soils for Civil Engineering Purposes. Classification Tests. British Standards Institution.
  • Cruzda KA, Hohmann M, 1997. Freezing effect on Strength of Clayey Soils. Applied Clay Science 12: 165-187.
  • Çalik Y, 2017. Ayrık Sentetik Liflerle Rastgele Donatılandırılmış İnce Daneli Zeminlerde Donatı Uzunluğunun Donma-Çözünme Davranışı Üzerindeki Etkisinin Araştırılması, Atatürk Üniversitesi Fen Bilimleri Enstitüsü, Yüksek Lisans Tezi (Basılmış).
  • Freilich BJ, Li C, Zornberg JG, 2010. Effective Shear Strength of Fiber-Reinforced Clays. 9th International Conference on Geosynthetics. Brazil.
  • Ghazavi M, Roustaie M, 2010. The İnfluence of Freeze-Thaw Cycles on the Unconfined Compressive Strength of Fiber-Reinforced Clay. Cold Regions Science and Technology, 61: 125-131.
  • Güllü H, Hazirbaba K, 2010. Unconfined Compressive Strength and Post-Freeze-Thaw Behavior of Fine-Grained Soils Treated with Geofiber and Synthetic Fluid. Cold Regions Science and Technology, 62: 142-150.
  • Hazirbaba K, Güllü H, 2010. California Bearing Ratio İmprovement and Freeze-Thaw Performance of Fine-Grained Soils Treated with Geofiber and Synthetic Fluid. Cold Regions Science and Technology, 63: 50-60.
  • Hazirbaba K, Zhang Y, Hulsey JL, 2011. Evaluation of Temperature and Freeze-Thaw Effects on Excess Pore Pressure Generation of Fine-Grained Soils. Soil Dynamics and Earthquake Engineering, 31: 372-384.
  • Hejazi SM, Sheikhzadeh M, Abtahi SM, Zadhoush A, 2012. A Simple Review of Soil Reinforcement by Using Natural and Synthetic Fibers. Construction and Building Materials, 30: 100-116.
  • Kamei T, Ahmed A, Shibi T, 2012. Effect of Freeze-Thaw Cycles on Durability and Strength of Very Soft Clay Soil Stabilised with Recycled Bassanite. Cold Regions Science and Technology, 82: 124-129.
  • Kumar A, Walia BS, Mohan J, 2006. Compressive Strength of Polipropilen Fiber Reinforced Higly Compressible Clay. Construction and Building Materials, 20(10): 1063-1068.
  • Kvǽrnǿ HS, Ǿygarden L, 2006. The Influence of Freeze-Thaw Cycles and Soil Moisture on Aggregate Stability of Three Soils in Norway. Catena, 67: 175-182.
  • Li C, 2005. Mechanical Response of Fiber-Reinforced Soil, Thesis of PhD, The University of Texas, Austin.
  • Liu J, Wang T, Tian Y, 2010. Experimental Study of The Dynamic Properties of Cement- and Lime- Modified Clay Soils Subjected to Freeze-Thaw Cycles. Cold Regions Science and Technology, 61: 29-33.
  • Maher MH, Ho YC, 1994. Mechanical Properties of Kaolinite/Fiber Soil Composit. Journal of Geotechnical Engineering, 120: 1381-1393.
  • Meteoroloji Genel Müdürlüğü 12. Bölge Erzurum.
  • Qi J, Wei M, Song C, 2008. Influence of Freeze-Thaw on Engineering Properties of Silty Soil. Cold Regions Science and Technology, 53: 397-404.
  • Önalp A, 2002. Geoteknik Bilgisi I Çözümlü Problemlerle Zeminler ve Mekaniği, Birsen Yayınevi, İstanbul, Türkiye.
  • Özkul ZH, Baykal G, 2007. Shear Behavior of Compacted Rubber Polipropilen Fiber-Clay Composite in Drained and Undrained Loading. Journal of Geotechnical and Geoenviromental Engineering, 133(7): 767-781.
  • Rafalko SD, Brandon TL, Filz GM, Mitchell JK, 2007. Polipropilen Fiber Reinforcement for Rapid Stabilization of Soft Clay Soils. Tranportation Research Record, 2026: 21-29.
  • Ramaji AE, 2012. A Review on the Soil Stabilization Using Low-Cost Methods. Journal of Applied Sciences Research, 8(4): 2193-2196.
  • Shita SA, Baghdadi Z, 2001. Simplified Method to Assess Freeze-Thaw Durability of Soil Cement. Journal of Materials in Civil Engineering, July/August 2001, 243-247.
  • Tunç A, 2002. Yol Mühendisliğinde Geoteknik ve Uygulamaları, Atlas Yayınevi, İstanbul, Turkiye.
  • Yarbaşı N, Kalkan E, Akbulut S, 2007. Modification of the Geotechnical Properties, as Influenced by Freeze-Thaw, of Granular Soils with Waste Additives. Cold Regions Science and Technology, 48:44-54.
  • Yetimoğlu T, Salbas O, 2003. A Study on Shear Strength of Sands Reinforced with Randomly Distributed Discrete Polipropilen Fibers. Geotextiles and Geomembranes, 21:103-110.
  • Zaimoğlu AS, 2010. Freezing-Thawing Behavior of Fine-Grained Soils Reinforced with Polypropylene Fibers. Cold Regions Science and Technology, 60: 63-65.
  • Zaimoğlu AS, Hattatoğlu F, Akbulut RK, Yetimoğlu T. 2012 Freeze-Thaw Behavior of Fine Grained Soils Subjected to Surcharge Loads, 3rd International Conference on New Developments in Soil Mechanics and Geotechnical Engineering, 28-30 June 2012, Near East University, Nicosia, North Cyprus.