Pencere Şekli, Konumu ve Boyutunun Binaların Doğal Havalandırmasına Etkisi

Bu çalışmada binaların doğal havalandırılmasında önemli bir rol oynayan pencerelerin şekli, boyutu ve hakim rüzgar yönüne göre konumunun binaların havalandırılmasındaki rolü incelenmiştir. Sabit hızda hava akımı sağlayan bir üfleyici kullanılarak toplam on pencere durumu, beş rüzgar yönü, üç duvar genişleme açısı ve üç duvar kalınlığı durumu için en iyi pencere modeli ve pozisyonu belirlenmiştir. Ayrıca sistem dış atmosferde hakim rüzgar yönünde de test edilmiştir. Elde edilen sonuçlardan pencere boyutunun dışarıya doğru eğimli bir şekilde genişlemesi (duvar kalınlığının artması), genişleme açısının artması ve rüzgarın pencereye doğrudan esmesi durumlarında bina içine beslenen hava miktarının arttığı bulunmuştur. Bina içine giren hava akımını pencerenin yanal eğim ve duvar kalınlığı artışının sırasıyla %16-23 ve %3-6 artırdığı, rüzgarın pencereye doğru esme açısındaki artış ile bina içine giren hava akımının hızla azaldığı ve rüzgarın pencere açıklığına paralel estiği durumda hava akımının sıfırladığı görülmüştür. Pencere açıklıklarının binanın hakim rüzgar yönünde ve onun zıt tarafında inşa edilmesinin, bina iç bölmelerinin hava akımının doğrusal akışını kolaylaştıracak şekilde inşa edilmesinin ve bina dışında türbülansa neden olacak girinti ve çıkıntıların mümkün olduğunca azaltılmasının binaların etkin doğal havalandırılması için önemli olduğu görülmüştür.

Effects of Window Shape, Size and Position on Natural Ventilation of Building

In this study, the role of the shape, size and position of the windows, which play an important role in the natural ventilation of the buildings, in the ventilation of the buildings were examined. By using a blower providing constant velocity airflow, the best window model and position were determined for a total of ten window conditions, five wind directions, three wall inclination angles, and three wall thickness conditions. In addition, the system was also tested in the prevailing wind direction in the outer atmosphere. From the results obtained, it was found that the amount of air fed into the building increases in cases where the window size expands in an outward sloping way, the angle of inclination and the wall thickness increase, and the wind blows directly into the window. It has been observed that the air flow entering the building increased by 16-23% and 3-6% with the increase of the lateral slope and wall thickness of windows, respectively, but the air flow decreased rapidly with the increase of the angle of blowing the wind towards the window, and the air flow became zero when the wind blew parallel to the window opening. It has been seen that it is important for effective natural ventilation of buildings that window openings are constructed in the prevailing wind direction and on the opposite side of the building, that the interior partitions of the building are constructed to facilitate the linear flow of air, and that the indentations and projections that will cause turbulence outside the building are reduced as much as possible.

___

  • ASHRAE. 1992. ASHRAE Duct Fitting Database 1992.
  • Cao X, Liu J, Jiang N, 2014. An overview of the applications of particle image velocimetry for indoor airflow field measurement. Lecture Notes in Electrical Engineering 263:223-231.
  • Castillo JA, Cruz-Salas MV, Huelsz G, 2017. Natural ventilation by wind exchangers in a building with a window in prevailing winds: design guidelines. International Journal of Ventilation, 16:1-14.
  • Favarolo PA, Manz H, 2005. Temperature-driven single-sided ventilation through a large rectangular opening. Building and Environment, 40: 689-699.
  • Gao CF, Lee WL, 2011. Evaluating the influence of openings configuration on natural ventilation performance of residential units in Hong Kong. Building and Environment, 46: 961-969.
  • Hassan MA, Guirguis NM, Shaalan MR, El-Shazly KM, 2007. Investigation of effects of window combinations on ventilation characteristics for thermal comfort in buildings. Desalination, 209: 251-260.
  • Heiselberg P, Svidt K, Nielsen PV, 2001. Characteristics of air flow from open windows. Building and Environment, 36: 859-869.
  • Heiselberg P, Bjørn E., Nielsen PV, 2002. Impact of open windows on room air flow and thermal comfort. International Journal of Ventilation, 1(2):91–100.
  • Kato S, Kono R, Hasama T, Ooka R, Takahashi T, 2006. A wind tunnel experimental analysis of the ventilation characteristics of a room with single-sided opening in uniform flow. International Journal of Ventilation, 5: 171-178.
  • Lo LJ, 2014. Particle image velocimetry experiments in a wind tunnel to study wind-driven airflow through building. Proceed. of 13th Int. Conf. on Indoor Air Quality and Climate, Indoor Air, July 7-12 2014, Hong Kong, Paper number: HP0614
  • Lukkunaprasit P, Ruangrassamee A, Thanasisathit N, 2009. Tsunami loading on buildings with openings. Science of Tsunami Hazards, 28: 303-310.
  • Sacht H, Lukiantchuki MA, 2017. Windows size and the performance of natural ventilation. Procedia Engineering, 196:972-979.
  • Siew CC, Che-Ani AI, Tawil NM, Abdullah NAG, Mohd-Tahir M, 2011. Classification of natural ventilation strategies in optimizing energy consumption in Malaysian office buildings. Procedia Engineering, 20: 363-371. Wang Y, Yu Y, Ye T, Bo Q, 2021. Ventilation Characteristics and Performance Evaluation of Different Window-Opening Forms in a Typical Office Room. Applied Science, 11: 8966.
  • Zhang X, Weerasuriya AU, Tse KT, 2020. CFD simulation of natural ventilation of a generic building in various incident wind directions: Comparison of turbulence modeling, evaluation methods, and ventilation mechanisms. Energy and Building, 229: 110516.
  • Zhou C, Wang Z, Chen Q, Jiang Y,Pei J, 2014. Design optimization and field demonstration of natural ventilation for high-rise residential buildings.Energy and Buildings, 82: 457-465.