Determination of parameters affecting copper removal from solutions by clinoptilolite: Adsorption isotherm and thermodynamic

Bir zeolit türü olan klinoptilolit minerali doğal katyon değiştiricilerden bir tanesidir. Bu çalışmada iyondeğişimi metodu ile Bigadiç klinoptiloliti kullanarak çözeltilerden bakır iyonlarının giderimi araştırılmıştır. Deney- ler kesikli modda çözelti pH, sıcaklık, iyon şiddeti, NaOH ve KOH ile şartlandırmanın bir fonksiyonu olarakgerçekleştirilmiştir. Iyon değişimi reaksiyonu dengeye 24 saatte gelmiştir. Klinoptilolitin adsorpsiyon kapa - sitesi yüksek pH, yüksek sıcaklık ve düşük iyonik şiddet ile artmıştır. Ham klinoptilolitin NaOH ve KOH ileşartlandırılması sırasıyla 10.4 ve 10.06 kat kapasite artışı sağlamıştır. Kapasitenin sıcaklık artışı ile artması prosesinendotermik doğada olduğunu göstermiştir. Ayrıca, bakırın klinoptilolit ile iyon değişimi reaksiyonunun yükseksıcaklıklarda kendiliğinden daha kolay gerçekleşeceği bulunmuştur. Klinoptilolitin maksimum kapasitesi NaOH ileşartlandırma sonrasında 48.45 mg g-1 olarak hesaplanmıştır. Sorpsiyon denge verileri Langmuir ve Freundlich mod- elleri ile analiz edilmiştir. İzotherm verilerinin Langmuir izotermine uyumunun Freundlich izoterminden çok dahaiyi olduğu görülmüştür. Elde edilen sonuçlar, Bigadiç klinoptilolitinin özellikle NaOH ile şartlandırma sonrasındaatık sulardan bakır gideriminde etkili bir şekilde kullanılabileceğini göstermiştir.

Klinoptilolit minerali ile çözeltilerden bakır giderimini etkileyen parametrelerin belirlenmesi: Adsorpsiyon izotermi ve termodinamiği

The clinoptilolite mineral which is a zeolite type is one of the natural cation exchangers. In thisstudy, the removal of copper ions from solutions using Bigadiç clinoptilolite by ion exchange method was investi- gated. Experiments were carried out in batch mode as a function of the solution pH, temperature, ionic strength andconditioning with NaOH and KOH. The ion exchange reaction reached to the equilibrium within 24 hours. Coppersorption capacity of the clinoptilolite increased with high solution pH, high temperature, and low ionic strength.Conditioning of the raw clinoptilolite with NaOH and KOH provided 10.4 and 10.06 fold capacity increase re - spectively. The increase of capacity with temperature increase showed that the sorption process was endothermicin nature. Also, the ion exchange reaction between clinoptilolite and copper ions was found as more spontaneousat high temperatures. Maximum sorption capacity of the clinoptilolite sample was calculated as 48.45 mg g-1 afterconditioning with NaOH. Sorption equilibrium data were analyzed by the Langmuir and Freundlich models. It wasseen that the ftness of isotherm data to the Langmuir isotherm was very good than Freundlich model. The obtainedresults showed that the Bigadiç clinoptilolite would be used effectively in removal of copper ions from industrialwastewaters especially after conditioning with NaOH.

___

  • Akgul, M., Karabakan, A., Acar, O., Yurum, Y., 2006. Removal of silver (I) from aqueous solutions with Clinoptilolite. Microporous and Mesoporous Materials, 94: 99-104.
  • Barancikova, G., Makovnikova, J., 2003. The infuence of humic acid quality on the sorption and mobility of heavy metals. Plant Soil Environment, 49: 565-571.
  • Bayramoglu, G., Altintas, B., Arica, M.Y., 2009. Adsorption kinetics and thermodynamic parameters of cationic dyes from aqueous solutions by using a new strong cation-exchange resin. Chemical Engineering Journal, 152: 339-346.
  • Cabrera, C., Gabaldon, C., Marzal, P., 2005. Sorption characteristics of heavy metal ions by a natural zeolite. Journal of Chemical Technology and Biotechnology, 80: 477-481.
  • Cojocaru, C., Trznadel, G.Z., 2007. Response surface modeling and optimization of copper removal from aqua solutions using polymer assisted ultrafltration. Journal Membrane Science, 298: 56-70.
  • Özdemir, Y., Dogan, M., Alkan, M., 2006. Adsorption of cationic dyes from aqueous solutions by sepiolite. Microporous and Mesoporous Materials, 96: 419-427.
  • Demirbas, A., Pehlivan, E., Gode, F., Altun, T., Arslan G., 2005. Adsorption of Cu(II), Zn(II), Ni(II), Pb(II), and Cd(II) from aqueous solution on Amberlite IR-120 synthetic resin. Journal of Colloid and Interface Science, 282: 20-25.
  • Dogan, M., Alkan, M., 2003. Adsorption kinetics of methyl violet onto perlite. Chemosphere, 50: 517-528.
  • Ekmekyapar, F., Aslan, A., Bayhan, Y.K., Cakici, A., 2006. Biosorp- tion of copper(II) by nonliving lichen biomass of Cladonia rangiformis hoffm. Journal of Hazardous Materials, 137: 293- 298.
  • Erdem, E., Karapinar, N., Donat, R., The removal of heavy metal cations by natural zeolites. Journal of Colloid and Interface Science, 280: 309-314.
  • Ersoy, B., Celik, M.S., 2002. Electrokinetic properties of Clinopti- lolite with mono- and multivalent electrolytes. Microporous and Mesoporous Materials, 55: 305-312.
  • Escobar, C., Soto-Salazar, C., Toral, M.I. J., 2006. Optimization of the electrocoagulation process for the removal of copper, lead and cadmium in natural waters and simulated wastewater. En - vironmental Management, 81: 384-391.
  • Freundlich, H. M. F., 1906. Over the adsorption in solution. The Journal of Physical Chemistry, 57: 385-470.
  • Hansen, H.K., Rojo, A., Ottosen, L.M., 2005. Electrodialytic reme - diation of copper mine tailings. Journal of Hazardous Materi- als, 117: 179-183.
  • Hsieh, C.H., Loa, S.L., Kuan, W.H., Chena, C.L., 2006. Adsorption of copper ions onto microwave stabilized heavy metal sludge. Journal of Hazardous Materials, 136: 338-344.
  • Hui, K.S., Chao, C.Y.H., Kot, S.C., 2005. Removal of mixed heavy metal ions in wastewater by zeolite 4A and residual products from recycled coal fy ash. Journal of Hazardous Materials, 127: 89-101.
  • Inglezakis, V.J., Loizidou, M.D., Grigoropoulou, H.P., 2002. Equi- librium and kinetic ion exchange studies of Pb2+, Cr3+, Fe3+ and Cu2+ on natural Clinoptilolite. Water Research, 36: 2784- 2792.
  • Kocaoba, S., Orhan, Y., Akyüz, T., 2007. Kinetics and equilibrium studies of heavy metal ions removal by use of natural zeolite. Desalination, 214: 1-10.
  • Langmuir, I., 1916. The adsorption of gases on plane surface of glass, mica and platinum. Journal of The American Chemical Society, 40: 1361-1368.
  • Özdemir, Y., Dogan, M., Alkan, M., 2006. Adsorption of cationic dyes from aqueous solutions by Sepiolite. Microporous and Mesoporous Materials, 96; 419-427.
  • Özmetin, C., Aydın, Ö., Kocakerim, M.M., Korkmaz, M., Özmetin, E., 2009. An empirical kinetic model for calcium removal from calcium impurity-containing saturated boric acid solution by ion exchange technology using Amberlite IR–120 resin. Chemical Engineering Journal, 148: 420-424.
  • Petrus, R. Warchol, J.K. 2005. Heavy metal removal by clinoptilo - lite. An equilibrium study in multi-component systems. Water Research, 39: 819-830.
  • Sprynskyy, M., Buszewski, B., Terzyk, A.P., Namiesnik, J., 2006. Study of the selection mechanism of heavy metal (Pb2+, Cu2+, Ni2+, and Cd2+) adsorption on clinoptilolite. Journal of Colloid and Interface Science, 304: 21-28.
  • Wıngenfelder, U., Hansen, C., Furrer, G., Schulin, R., 2005. Removal of Heavy Metals from Mine Waters by Natural Zeolites. Environmental Science and Technology, 39: 4606-4613.
  • Woinarski, A.Z., Snape, I., Stevens ,G.W., Stark, S.C., 2003. The effects of cold temperature on copper ion exchange by natural zeolite for use in a permeable reactive barrier in Antarctica. Cold Regions Science and Technology, 37: 159-168.
Iğdır Üniversitesi Fen Bilimleri Enstitüsü Dergisi-Cover
  • ISSN: 2146-0574
  • Yayın Aralığı: Yılda 4 Sayı
  • Başlangıç: 2011
  • Yayıncı: -