Dağıtılmış Alt Bragg Dielektrik Yansıtıcılı Işık Yayan Diyot

Bu çalışmada alt Bragg yansıtıcısına sahip yakın kızılötesi bölgede ışıma yapan p-i-n diyotun tasarımı, fabrikasyon detayları ve elektro-optik özellikleri incelenmektedir. İncelenen ışık yayan aygıtın aktif ışıma bölgesi 20 adet GaInNAs/GaNAs (7 nm /13 nm) kuantum kuyusu sisteminden oluşmaktadır. Alt dielektrik aynası ise 15 adet GaAs/AlAs Bragg yansıtıcı çiftlerinin üst üste tabakasal olarak büyütülmesinden oluşmaktır. Aygıtın ışıma merkez dalgaboyu 1310 nm olup, spektral yarı genişliği 14.4 nm’dir. Işıma eşik akımı 20 nA olan aygıtın, 200 mA sürülen akım varlığında maksimum ışıma gücü 38 mW’dır. Bu çalışmada, yakın kızılötesi bölgede ışıma yapan aygıt üretilmesinin ve karakterize edilmesinin yanı sıra sadece alt Bragg yansıtıcı kullanılarak bile geleneksel ışık yayan diyotlara göre ışıma spektral genişliğinin ve ışıma profilinin iyileştirilebileceğini gösterilmiştir.

A quasi-cavity enhanced Light Emitting Diode

In this letter, design details and electro-optical properties of an infrared light emitting diode enhanced with a quasi-cavity structure have been reported. The quasi-cavity structure was formed with a bottom dielectric film stack. The investigated light emitting diode consists of 7 nm 20 GaInNAs/GaNAs quantum wells with 15 pairs of GaAs/AlAs Bragg Reflectors to form a quasi-cavity. The emission wavelength of the device is in between 1295 and 1325 nm with a centre wavelength of 1310 nm. The spectral linewidth is 14.4 nm. The threshold operation current of the device is 20 nA, and the maximum emission power of 38 mW is obtained under the injection current of 200 mA. It is demonstrated that using a quasi-cavity design formed by only a bottom reflector structure improve the directionality of the emission and decreases the linewidth of the infrared light emitting diode, compared with an ordinary infrared light emitting diode structure.

___

  • Balkan N, Erol A, Sarcan F, Al-Ghuraibawi LFF, Nordin MS, 2015. Dilute nitride resonant cavity enhanced photodetector with internal gain for the λ ∼ 1.3 μm optical communications window. Superlattices and Microstructures, 86: 467–471.
  • Chaqmaqchee FAI, Balkan N, Herrero JMU, 2012. Top-Hat HELLISH-VCSOA for optical amplification and wavelength conversion for 0.85 to 1.3μm operation. Nanoscale Research Letters, 7(1): 1–6.
  • Chaqmaqhee FAI, Mazzucato S, Oduncu M, Balkan N, Su Y, Gunes, M, Hugues M, Hopkinson M, 2011. GaInNAs-based Hellish-vertical cavity semiconductor optical amplifier for 1.3 μm operation. Nanoscale Research Letters, 6: 104.
  • Dorsaz J, Carlin JF, Zellweger CM, Gradecak S, Ilegems M, 2004. InGaN/GaN resonant-cavity LED including an AlInN/GaN Bragg mirror. Physica Status Solidi Applied Research 201(12): 2675–2678.
  • Erol, A, Akalin, E, Sarcan, F, Donmez, O, Akyuz, S, Arikan, CM, Puustinen, J, Guina, M, 2012. Excitation energy-dependent nature of Raman scattering spectra in GaInNAs/GaAs quantum well structures. Nanoscale Research Letters, 7: 656.
  • Horng RH, Wang WK, Huang SY, Wuu DS, 2006. Effect of resonant cavity in wafer-bonded Green InGaN LED with dielectric and silver mirrors. IEEE Photonics Technology Letters, 18(3): 457-459.
  • Kaschner A, Lüttgert T, Born H, Hoffmann A, Egoro AY, Riechert H, 2002. Recombination mechanisms in GaInNAs/GaAs multiple quantum wells. Applied Physics Letters, 78(10): 1391-1393.
  • Larson MC, Kondow M, Kitatani T, Nakahara K, Tamura K, Inoue H, Uomi K, 1998. GaInNAs-GaAs long-wavelength vertical-cavity surface-emitting laser diodes. IEEE Photonics Technology Letters, 10(2): 188-190.
  • Montes M, Guzmán A, Trampert A, Hierro A, Calleja E, 2009. 1.3μm emitting GaInNAs/GaAs quantum well resonant cavity LEDs. Solid State Electronics 54: 492–496.
  • Murel AV, Danil VM, Drozdov YN, Gaponova DM, Shashkin VI, Shmagin VB, Khrykin OI, 2005. Electroluminescent Properties of Heterostructures with GaInNAs Quantum Wells. Semiconductors 39(1): 30-32.
  • Riechert H, Ramakrishnan A, Steinle G, 2007. Development of InGaAsN-based 1.3 µm VCSELs. Semiconductor Science and Technology,17: 892-897.
  • Rutz A, Liverini V, Müller E, Schön S, Keller U, 2007. All-GaInNAs ultrafast lasers: Material development for emitters and absorbers. Journal of Crystal Growth, 301: 525-528.
  • Sarcan F, Nordin MS, Kuruoğlu F, Erol A, Vickers AJ, 2017. Characterization of temperature dependent operation of a GaInNAs-based RCEPD designed for 1.3 μm. Superlattices and Microstructures, 102: 27–34. Sarcan F, Nutku N, Nordin MS, Vickers AJ, Erol A, 2018. A study on the voltage-dependent response of a GaInNAs-based pin photodetector with a quasi-cavity. Semiconductor Science and Technology, 33: 114006.
  • Sarcan F, Wang Y, Krauss TF, Erucar T, Erol A, 2020. Dilute nitride resonant-cavity light emitting diode. Optics and Laser Technology, 122: 105888.
  • Schubert EF, Wang YH, Cho AY, Tu LW, Zydzik GJ, 1992. Resonant cavity light-emitting diode. Applied Physics Letters, 60(8): 921–923.
  • Song YK, Diagne M, Zhou H, Nurmikkoa AV, Schneider RP, Takeuchi T, 2000. Resonant-cavity InGaN quantum-well blue light-emitting diodes. Applied Physics Letters, 77(12): 1744-1746.
  • Yamada M, Anan T, Hatakeyama H, Tokutome K, Suzuki N, Nakamura T, Nishi K, 2005. Low-Threshold Operation of 1.34 µm GaInNAs VCSEL Grown by MOVPE. IEEE Photonics Technology Letters,17(5): 950-952.