Bazı Tarım Bitkileri Kullanılarak Arıtma Çamurundan Kurşun Kirliliğinin Şelat Destekli Fitoremediasyon Yöntemiyle Giderilmesi

Fitoremediasyon, toprak, yer altı, yer üstü sularının hatta havadaki kirleticilerin ortadan elemine edilmesinde bitkilerin kullanıldığı bir yöntemdir.  Bu çalışmada, Allium cepa L.  (soğan), Chenopodium quinoa Willd. (kinoa) ve Brassica napus L.(kanola) türleri kullanılarak arıtma çamurundan Pb elementinin fitoremediasyon yöntemi ile temizlenmesi araştırılmıştır. Ayrıca fitoremediasyon kapasitesini arttırmak üzere kompleks yapıcı şelat ilave edilip, bitkilerin element giderim performanslarındaki değişimler gözlenmiştir. Ağır metal gideriminde şelat desteği olarak EDTA, hümik asit, 1-10 fenantrolin, nitro ve pridin kullanılmıştır. Tolerans İndeksi (Tİ) değerleri incelendiğinde şelat ilavesinin bitkilerin gelişimi ve kuru ağırlık miktarlarında değişikliğe neden olduğu tespit edilmiştir.  Çalışmada bitkilerin kök, gövde ve yapraklarında ağır metal biriktirme miktarları incelenmiş ve türlerin köklerinde biriktirmenin daha fazla olduğu tespit edilmiştir. Özellikle hümik asit, EDTA ve nitro şelatının kullanıldığı deneme saksılarında ağır metal biriktirme miktarı daha yüksek bulunmuştur. Taşıma Faktörü (TF) değerleri incelendiğinde EDTA, hümik asit, piridin  ve 1-10 feontralin şelatında A. cepa>C. quinoa> B. napus, nitro şelatında ise C. quinoa> A. cepa>B. napus bulunmuştur. En etkili birikim ise A.cepa ve C. quinoa türlerinde gerçekleşmiştir. Hiperakümülatör olarak bilinen B. napus nitro, piridin ve  1-10  fenantrolin  şelatları eklendiği zaman bu özelliğini göstermediği belirlenmiştir. Türlerin Pb elementini köklerde biriktirme ve üst organlara taşımasının şelat ekleme ile arttığı tespit edilmiştir. Buna göre, ağır metal alımını artırmak için hümik asit, EDTA ve nitro kullanılabileceğini göstermektedir.

Removal of Lead Pollution from Treatment Sludge by Chelate Supported Phytoremediation Method Using Some Agricultural Plants

Phytoremediation is a method that plants are used to eliminate the pollutants in soil, underground, surface water and even in weather. In this study, the removal of Pb element from treatment sludge by phytoremediation method using Allium cepa, Chenopodium quinoa and Brassica napus species was investigated. In addition, complex builder chelate was added to increase the phytoremediation capacity, and changes in the element removal performance of the plants were observed. EDTA, humic acid, 1-10 phenanthroline, nitro, pridin were used as chelate support in heavy metal removal.  When Tolerance Index (TI) values were examined, it was determined that the addition of chelate caused a change in the growth of plants and dry weight. In the study, the amount of heavy metal deposition in the root, stem and leaves of the plants was investigated and it was determined that accumulation in the roots of the species was higher. According to the results obtained in the study, It was determined that the accumulation in the roots of the species is more.Especially in the test pots using humic acid, EDTA and Nitro chelate, the accumulation was higher. When TF values were examined,  A. cepa>C. quinoa>B. napus in EDTA, the Humic acid, the pyridine and the 1-10 Phenanthroline chelate and C. quinoa>A. cepa>B. napus in nitro chelation were found. The most effective accumulation occurred  in A.cepa and C. quinoa species.It was determined that B. napus, known as the hyperaccumulator, did not show its property when nitro, pyridine and 1-10 phenanthroline chelates were added.It was determined that accumulation of Pb in the roots and transportation of the element to the upper organs by the Species increases with chelate addition. Accordingly, it is revealed that humic acid, EDTA and nitro can be used to increase heavy metal intake.As a result, in order to use the augmentation mud in agriculture, it needs to be purified from the substances that can damage the living things. Chelate assisted phytoremediation method can be used to remove heavy metal contamination and increase heavy metal uptake from the soil.

___

  • Adiloğlu S, Adiloğlu A, Açıkgöz FE, Yeniaras T, Solmaz Y, 2015. Labada (RumexpatientiaL.) Bitkisinin Kurşun Kirliliğinin Gideriminde Kullanım Kapasitesinin Araştırılması. Fen Bilimleri Dergisi, 3 (2).
  • Andra SS, Datta R, Sarkar D, Saminathan SKM, Mullens CP, Bach SBH,2009. Analysis of phytochelatin complexes in the lead tolerant vetiver grass (Vetiveria zizanioides (L.) using liquid chromatography and mass spectrometry. Environ Pollut. 157:2173–2183.
  • Anonim 2006. ttp://mevzuat.basbakanlik.gov.tr (Erişim tarihi 25.05.2018).
  • Aslanhan E, 2012. Çevresel Kirliliklerin Takibinde Kullanılacak Yeni Biyomonitör Bitkiler. Ahi Evran Üniversitesi, Fen Bilimleri Enstitüsü, Yüksek Lisans Tezi Kimya Anabilim Dalı, Kırşehir.
  • Ben Rejeb K, Ghnaya T, Zaier H, Benzarti M, Baioui R, Ghabriche R, Wali M, Lutts S, Abdelly C., 2013. Evaluation of the Cd2+ phytoextraction potential in the xerohalophyte Salsola kali L. and the impact of EDTA on this process. Ecol Eng 60:309–315.
  • Bowen HJM, 1979. Environmental Chemistry of the Elements. Academic Press, New York.
  • Carranza-Álvarez C, Alonso-Castro AJ, Alfaro-De La Torre, MC, García-De La Cruz R F, 2008. Accumulation and distribution of heavy metals in Scirpus americanus and Typha latifolia from an artificial lagoon in San Luis Potosí, México. Water, air, and soil pollution, 188(1-4): 297-309.
  • Chapman H D,1971 Proc. Intern. Symp. Soil Fert. Evaln. New Delhi 1:927-947
  • Chen YX, Lin Q, Luo YM, He YF, Zhen SJ, Yu YL, Tian GM, Wong MH 2003. The role of citric acid on the phytoremediation of heavy metal contaminated soil. Chemosphere, 50: 807–811.
  • Clemens, S. 2001. Molecular Mechanisms of Plant Metal Tolerance and Homeostasis, Planta 212:475–486.
  • De la Rosa G, Jose RPV, Milka M, Jason GP, Irene CA, Jorge LGT, 2004. Cadmium uptake and translocation in tumbleweed (Salsola kali), a potential Cd-hyperaccumulator desert plant species: ICP/OES and XAS studies. Chemosphere 55:1159–1168.
  • Duman H, 2007. 1-10 fenantrolin türevi bir Schiff bazı ve geçiş metal komplekslerinin sentezi spektroskopik ve termal analizi(Doctoral dissertation).Yıldız Teknik Üniversitesi Fen Bilimleri Enstitüsü,İstanbul.
  • Durust N, Durust Y, Tuğrul D, Zengin M, 2004. Heavy metal contents od pinus radiata trees of İzmit (Turkey). Asian J. of Chemistry, Vol: 16 (2): 1129- 1134.
  • Ehsan S, Prasher SO, Marshall W 2007. Simultaneous mobilization of heavy metals and polychlorinated biphenyl (PCB) compounds from soil with cyclodextrin and EDTA in admixture. Chemosphere 68: 150–158.
  • Evangelou MW, Daghan H,Schaeffer A, 2004. The influence of humic acids on the phytoextraction of cadmium from soil. Chemosphere, 57(3): 207-213.
  • GarcÍa S, Zornoza P, Hernández LE, Esteban E,Carpena RO, 2017. Response of Lupinus albus to Pb–EDTA indicates relatively high tolerance. Toxicological & Environmental Chemistry, 99(9-10): 1378-1388.
  • Gerzabek M.H, Ullah SM 1990. Influence of Fulvic and Humic Acids on Cd and Ni-Toxicity to Zea Mays (L.). Boden Cultur, 41(2): 115-124.
  • Halim M, Conte P, Piccolo A, 2003. Potential availability of heavy metals to phytoextraction from contaminated soils induced by exogenous humic substances. Chemosphere, 52(1): 265-275.
  • Kabata-Pendias A, Pendias H, 2001. Trace Elements in Soils and Plants. CRC Press, Inc., Boca Raton, FL, USA.
  • Kaçar B, İnal A, 2008. Bitki Analizleri, Nobel Yayın No: 1241, Fen Bilimleri, 63, Nobel Yayın Dağıtım Ltd. Şti., Ankara.
  • Kahvecioğlu Ö, Kartal G, Güven A, Timur S, 2004. Metallerin Çevresel Etkileri–III. GTÜ Metalürji ve Malzeme Mühendisliği Bölümü, İstanbul, 15s.
  • Kirkham MB, 2000. EDTA-facilitated phytoremediation of soil with heavy metals from sewage sludge. International Journal of Phytoremediation, 2(2): 159-172.
  • Kumar N, Bauddh K, Kumar S, Dwivedi N, Singh DP, Barman SC, 2013. Accumulation of metals in weed species grown on the soil contaminated with industrial waste and their phytoremediation potential. Ecological engineering, 61: 491-495.
  • Kumar V,Chopra AK, 2018. Phytoremediation potential of water caltrop (Trapa natans L.) using municipal wastewater of the activated sludge process-based municipal wastewater treatment plant. Environmental technology.39(1):12-23.
  • Küçükhemek M, Gür K, Uyanöz R, Çetin Ü, 2005. Arıtma Çamuru ve Çiftlik Gübresinin Çim Bitkisi Verimine ve Renk Özelliğine Etkisi, I. Ulusal Arıtma Çamurları Sempozyumu, 23-25 Mart, İzmir.
  • Laghlimi M, Baghdad B, El Hadi H,Bouabdli A. 2015. Phytoremediation mechanisms of heavy metal contaminated soils: A review, Open Journal of Ecology, 5: 375-388.
  • Lai, H. Y., & Chen, Z. S. (2005). The EDTA effect on phytoextraction of single and combined metals-contaminated soils using rainbow pink (Dianthus chinensis). Chemosphere, 60(8):1062-1071.
  • Lambrechts T, Gustot Q, Couder E, Houben D, Iserentant A, Lutts S, 2011. Comparison of EDTA-enhanced phytoextraction and phytostabilisation strategies with Lolium perenne on a heavy metal contaminated soil. Chemosphere 85:1290–1298.
  • Li Z, Shuman LM, 1996. Heavy metal movement in metal-contaminated soil profiles. Soil Science, 161(10), 656-666.
  • McGrath SP, Zhao FJ, Lombi E, 2001. Plant and rhizosphere processes involved in phytoremediation of metal-contaminated soils. Plant and Soil, 232, 207-214.
  • Meisel T, Lakatos B, Mady G, 1977. Biopolymer-Metal Complex Systems. VII. Ion Exchange and Redox Capacity of Peat Humic Substances. Agrokémia és Talajtan, 26(3/4): 269-280.
  • Najeeb U, Ahmad W, Zia MH, Zaffar M, Zhou W, 2017. Enhancing the lead phytostabilization in wetland plant Juncus effusus L. through somaclonal manipulation and EDTA enrichment. Arabian Journal of Chemistry, 10: 3310-3317.
  • Nascimento CWAD, Xing B, 2006. Phytoextraction: a review on enhanced metal availability and plant accumulation. Scientia agricola, 63(3): 299-311.
  • Özay C, Mammadov R, 2013. Ağır metaller ve süs bitkilerinin fitoremediasyonda kullanılabilirliği. BAÜ Fen Bil. Enst. Dergisi Cilt 15(1): 67-76.
  • Pak O, 2011. Kırklareli Sınırları İcerisindeki Otoban Kenarlarında Bulunan Tarım Arazilerinde Bazı Ağır Metal Kirliliğinin Arastırılması. Namık Kemal Universitesi, Fen Bilimleri Enstitüsü, Toprak Bilimi ve Bitki Besleme Anabilim Dalı, Yuksek Lisans Tezi, Tekirdağ.
  • Placek A, Grobelak A, Kacprzak M, 2016. Improving the phytoremediation of heavy metals contaminated soil by use of sewage sludge. International journal of phytoremediation. 18(6):605-618.
  • Pulford ID, Riddell-Black D, Stewart C. 2002. Heavy metal uptake by willow clones from sewage sludge-treated soil: the potential for phytoremediation. International Journal of Phytoremediation. 4(1): 59-72.
  • Quartacci MF, Argilla A, Baker AJM, Navari-Izzo F, 2006. Phytoextraction of metals from a multiply contaminated soil by Indian mustard. Chemosphere 63:918–925.
  • Reeves R. 2006.Hyperaccumulation of trace elements by plants. In: Morel JL., Echevarria G., Goncharova N. (eds) Phytoremediation of Metal-Contaminated Soils. NATO Science Series, vol 68. Springer, Dordrecht
  • Tai Y, Yang Y, Li Z, Yang Y, Wang J, Zhuang P, Zou B. 2017. Phytoextraction of 55-year-old wastewater-irrigated soil in a Zn–Pb mine district: effect of plant species and chelators. Environmental technology, 1-13.
  • Topcuoğlu B, Önal MK, Arı N, 2003. Toprağa Uygulanan Kentsel Arıtma Çamurunun Domates Bitkisine Etkisi: I. Bitki Besinleri ve Ağır Metal İçerikleri. Mediterranean Agricultural Sciences, 16(1): 87-96.
  • Turan M, Esringu A, 2007. Phytoremediation based on canola (Brassica napus L.) and Indian mustard (Brassica juncea L.) planted on spiked soil by aliquot amount of Cd, Cu, Pb, and Zn. Plant Soil and Environment, 53(1): 7.
  • Turan M., Angın I. (2004). Organic chelate assisted phytoextraction of B, Cd, Mo and Pb from contaminated soils using two agricultural crop species. Acta Agr. Scand., Sec. B, Soil Plant Sci., 54: 221–231.
  • Turgut C, Pepe MK, Cutright TJ, 2004. The effect of EDTA and citric acid on phytoremediation of Cd, Cr, and Ni from soil using Helianthus annuus. Environ. Pollut., 131: 147–154.
  • Tüfekçi S, Gülbaba AG, Tokgönül F, 2008. Tarsus Evsel Arıtma Çamurunun Okaliptüs ve Kızılçam Fidanları Üretiminde Kullanılması. Çevre ve Orman Bakanlığı Yayın No: 368 ISBN:978-605-393-042-6 DOA Yayın No: 49.
  • Vargas C, Pérez-Esteban J, Escolástico C, Masaguer A, Moliner A, 2016. Phytoremediation of Cu and Zn by vetiver grass in mine soils amended with humic acids. Environmental Science and Pollution Research, 23(13), 13521-13530.
  • Waldigri M, Pera A, Agnolucci M, Frassinetti S, Lunardi D, Vallini G, 1996. Effects of compost-derived humic acids on vegetable biomass production and microbial growth within a plant (Cichorium intybus) soil system: a comparative study. Agriculture, Ecosystems And Environment, 58, (2-3): 133-144.
  • Wilkins DA,1978. The measurement of tolerance to edaphic factors by means of root growth. New Phytologist, 80(3): 623-633.
  • Yoon J, Cao X, Zhou O, Ma LQ, 2006. Accumulation of Pb, Cu, and Zn in native plants growing on a contaminated Florida site. Sci Total Environ 368:456–464.
  • Zaier H, Ghnaya T, Ghabriche R, Chmingui W, Lakhdar A, Lutts S, Abdelly C, 2014. EDTA-enhanced phytoremediation of lead-contaminated soil by the halophyte Sesuvium portulacastrum. Environmental Science and Pollution Research, 21(12): 7607-7615.