Adipoz Doku Kaynaklı Ekstrasellüler Veziküllerin Meme Kanseri Hücreleri Üzerine Apoptotik Etkisi

Meme kanseri, en yaygın küresel malignitedir ve kansere bağlı ölümlerin ikinci önde gelen nedenidir. Meme kanserinin erken teşhis edilmesi, farklı tedavi yöntemleri ile tedavi başarı oranını yükseltmektedir. Ancak ilerleyen evrelerde ise hem tedavi başarı oranı düşmektedir hem de güncel tedavi yöntemlerinden kemoterapi veya radyoterapinin uygulanmasının hastaya yan etkileri de olabilmektedir. Bu nedenle kişiye özel, yan etkinin olmadığı tedavi modellerini bulmak gerekir. Eksozomlar doğal nanopartiküller olup, aynı zamanda hücreler arası iletişimde önemli roller oynayan, çok çeşitli lipidler, proteinler, metabolitler, RNA'lar ve DNA'lar içeren küçük hücre dışı veziküller olarak bilinirler. Bu çalışmanın amacı, adipoz doku kaynaklı mezenkimal kök hücrelerden presipitasyon yöntemi ile elde edilen eksozomların (ADEkso) insan meme kanseri hücre hattı, MCF-7, ve meme epitel hücre hattı, MCF10A, üzerinde farklı konsantrasyonlarda Anneksin V/PI metodu kullanılarak apoptotik etkilerinin araştırılmasıdır. Erken apoptotik, geç apoptotik, canlı ve ölü hücreler, her iki hücre hattında 24, 48 ve 72 saat boyunca farklı 40x1010, 20x1010 ve 10x1010 AD-Ekso/mL konsantrasyonları ile muamele edilerek MCF-7 gruplarında toplam yüzde total apoptotik etkileri 24 saat için 40x1010/AD-Ekso/mL’de %58.817±4.2, 48 saat için 0x1010/AD-Ekso/mL 'de %56.37±9 ve 72 saat için 20x1010 AD- Ekso/mL'de %70.9±4.1'dir. AD-Ekso verilen MCF-7 hücre grupları hem kendi aralarında hem de AD-Ekso uygulanmayan MCF-7 hücre grupları ve MCF10A hücre grupları ile karşılaştırıldığında zaman ve doza bağlı olarak aradaki fark istatistiksel olarak anlamlı bulunmuştur (p˂0.05). MCF10A ve MCF-7 kontrol grupları değerlendirilmiş ve anlamlı bir fark gözlenmemiştir (p˃0.05). Sonuç olarak, eksozomlar kanser hücrelerinde apoptozu indükleyerek kanser tedavisinde potansiyel kapasiteye sahip olabilir

Apoptotic Effect of Adipose Tissue-Derived Extracellular Vesicles on Breast Cancer Cells

Breast cancer is the most common global malignancy and the second leading cause of cancer death. Early diagnosis of breast cancer increases the success rate of treatment with different treatment methods. However, in the advancing stages, both the treatment success rate decreases, and the application of chemotherapy or radiotherapy, which is one of the current treatment methods, may also have side effects on the patient. Therefore, it is necessary to find that personalized treatment models do not have side effects. Exosomes are natural nanoparticles and are also known as small extracellular vesicles which play important roles in intercellular communication, containing a wide variety of lipids, proteins, metabolites, RNAs and DNAs. This study aimed to investigate the apoptotic effects of exosomes obtained from an adipose tissue-derived mesenchymal stem cell (AT-Exo) by precipitation method on human breast cancer MCF-7 and breast epithelial MCF10A at different concentrations by using Annexin V & Dead Cell method. Early apoptotic, late apoptotic, live and dead cells have been evaluated by Annexin V-FITC/PI staining in both cell lines and have found that the percentage of total apoptotic 58.817±4.2%, 56.37±9%, 70.9±4.1% in the 40x1010, 20x1010 ve 10x1010 AT-Exo mL-1 groups for 24h, 48h and 72h respectively. When MCF-7 cell groups given AT-Exo have been compared both among themselves and with MCF-7 and MCF10A cell groups not given AT-Exo, the difference has been statically significant depending on time and dose (p˂0.05). MCF10A and MCF-7 control groups have been evaluated, and no significant difference has been observed (p˃0.05). In conclusion, exosomes may have the potential capacity in cancer therapy by inducing apoptosis in cancer cells.

___

  • Basoli, V., Santaniello, S., Cruciani, S., Ginesu, G., Cossu, M., Delitala, A., Maioli, M. (2017). Melatonin and vitamin D ınterfere with the adipogenic fate of adipose-derived stem cells. International Journal of Molecular Sciences, 18(5), 981. https://doi.org/10.3390/ijms18050981
  • Brydson, R., Brown, A., Hodges, C., Abellan, P., & Hondow, N. (2015). Microscopy of nanoparticulate dispersions. Journal of Microscopy, 260(3), 238–247. https://doi.org/10.1111/jmi.12290
  • Cardoso, F., Cataliotti, L., Costa, A., Knox, S., Marotti, L., Rutgers, E., & Beishon, M. (2017). European Breast Cancer Conference manifesto on breast centres/units. European Journal of Cancer, 72(2017), 244–250. https://doi.org/10.1016/j.ejca.2016.10.023
  • Chambers, I., & Tomlinson, S. R. (2009). The transcriptional foundation of pluripotency. Development, 136(14), 2311–2322. https://doi.org/10.1242/dev.024398
  • Chen, S., Lv, X., Hu, B., Zhao, L., Li, S., Li, Z., Shao, Z. (2018). Critical contribution of RIPK1 mediated mitochondrial dysfunction and oxidative stress to compression-induced rat nucleus pulposus cells necroptosis and apoptosis. Apoptosis, 23(5–6), 299–313. https://doi.org/10.1007/s10495-018-1455-x
  • Choi, M. Y., Yeo, S. W., & Park, K. H. (2012). Hearing restoration in a deaf animal model with intravenous transplantation of mesenchymal stem cells derived from human umbilical cord blood. Biochemical and Biophysical Research Communications, 427(3), 629–636. https://doi.org/10.1016/j.bbrc.2012.09.111
  • Dragovic, R. A., Gardiner, C., Brooks, A. S., Tannetta, D. S., Ferguson, D. J. P., Hole, P., Sargent, I. L. (2011). Sizing and phenotyping of cellular vesicles using Nanoparticle Tracking Analysis. Nanomedicine: Nanotechnology, Biology and Medicine, 7(6), 780–788. https://doi.org/10.1016/j.nano.2011.04.003
  • Eirin, A., Zhu, X.-Y., Puranik, A. S., Woollard, J. R., Tang, H., Dasari, S., Lerman, L. O. (2016). Comparative proteomic analysis of extracellular vesicles isolated from porcine adipose tissue-derived mesenchymal stem/stromal cells. Scientific Reports, 6(1). https://doi.org/10.1038/srep36120
  • Guerra, F., Arbini, A. A., & Moro, L. (2017). Mitochondria and cancer chemoresistance. Biochimica et Biophysica Acta (BBA)-Bioenergetics, 1858(8), 686–699. https://doi.org/10.1016/j.bbabio.2017.01.012
  • Gurunathan, S., Kang, M.-H., Jeyaraj, M., Qasim, M., & Kim, J.-H. (2019). Review of the ısolation, characterization, biological function, and multifarious therapeutic approaches of exosomes. Cells, 8(4), 307. https://doi.org/10.3390/cells8040307
  • Hu, Y., Huang, L., Shen, M., Liu, Y., Liu, G., Wu, Y., Xiong, L. (2019). Pioglitazone protects compression-mediated apoptosis in nucleus pulposus mesenchymal stem cells by suppressing oxidative stress. Oxidative Medicine and Cellular Longevity, 2019, 1–14. https://doi.org/10.1155/2019/4764071
  • Li, Q., Wang, H., Peng, H., Huyan, T., & Cacalano, N, A. (2019). Exosomes: Versatile nano mediators of ımmune regulation. Cancers, 11(10), 1557. https://doi.org/10.3390/cancers11101557
  • Lin, R., Wang, S., & Zhao, R. C. (2013). Exosomes from human adipose-derived mesenchymal stem cells promote migration through Wnt signaling pathway in a breast cancer cell model. Molecular and Cellular Biochemistry, 383(1–2), 13–20. https://doi.org/10.1007/s11010-013-1746-z
  • Phan, T. G., & Croucher, P. I. (2020). The dormant cancer cell life cycle. Nature Reviews Cancer, 20(7), 398–411. https://doi.org/10.1038/s41568-020-0263-0
  • Rasmussen, M. K., Pedersen, J. N., & Marie, R. (2020). Size and surface charge characterization of nanoparticles with a salt gradient. Nature Communications, 11(1). https://doi.org/10.1038/s41467-020-15889-3
  • Santaniello, S., Cruciani, S., Basoli, V., Balzano, F., Bellu, E., Garroni, G., Maioli, M. (2018). Melatonin and vitamin D orchestrate adipose derived stem cell fate by modulating epigenetic regulatory genes. International Journal of Medical Sciences, 15(14), 1631–1639. https://doi.org/10.7150/ijms.27669
  • Santos, P., & Almeida, F. (2021). Exosome-Based vaccines: History, current state, and clinical trials. Frontiers in Immunology, 12. https://doi.org/10.3389/fimmu.2021.711565
  • Shen, K., Jia, Y., Wang, X., Zhang, J., Liu, K., Wang, J., Hu, D. (2021). Exosomes from adipose-derived stem cells alleviate the inflammation and oxidative stress via regulating Nrf2/HO-1 axis in macrophages. Free Radical Biology and Medicine, 165, 54–66. https://doi.org/10.1016/j.freeradbiomed.2021.01.023
  • Shi, G., & Jin, Y. (2010). Role of Oct4 in maintaining and regaining stem cell pluripotency. Stem Cell Research & Therapy, 1(5). https://doi.org/10.1186/scrt39
  • Takahashi, K., & Yamanaka, S. (2006). Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell, 126(4), 663–676. https://doi.org/10.1016/j.cell.2006.07.024
  • Wankhade, U. D., Shen, M., Kolhe, R., & Fulzele, S. (2016). Advances in adipose-derived stem cells ısolation, characterization, and application in regenerative tissue engineering. Stem Cells International, 2016, 1–9. https://doi.org/10.1155/2016/3206807 Weaver, B. A. A., & Cleveland, D. W. (2005). Decoding the links between mitosis, cancer, and chemotherapy: The mitotic checkpoint, adaptation, and cell death. Cancer Cell, 8(1), 7–12. https://doi.org/10.1016/j.ccr.2005.06.011
  • Wei, W., Ao, Q., Wang, X., Cao, Y., Liu, Y., Zheng, S. G., & Tian, X. (2021). Mesenchymal stem cell–derived exosomes: A promising biological tool in nanomedicine. Frontiers in Pharmacology, 11. https://doi.org/10.3389/fphar.2020.590470
  • Wu, S., Wang, Y., Yuan, Z., Wang, S., Du, H., Liu, X., Zhu, X. (2018). Human adipose‑derived mesenchymal stem cells promote breast cancer MCF7 cell epithelial‑mesenchymal transition by cross interacting with the TGF‑β/Smad and PI3K/AKT signaling pathways. Molecular Medicine Reports. https://doi.org/10.3892/mmr.2018.9664
  • Zhao, Y., Sun, X., Cao, W., Ma, J., Sun, L., Qian, H., Xu, W. (2015). Exosomes derived from human umbilical cord mesenchymal stem cells relieve acute myocardial ıschemic ınjury. Stem Cells International, 2015, 1–12. https://doi.org/10.1155/2015/761643