Evaluation of CFR-PEEK Miniplates with Finite Element Analysis in Mandibular Angle Fracture

Evaluation of CFR-PEEK Miniplates with Finite Element Analysis in Mandibular Angle Fracture

Purpose The purpose of this study to compare the biomechanical stability of the fixation system made of CFR-PEEK and titanium alloy with the three-dimensional finite element analysis method (FEA) in the internal fixation of an unfavorable (inferior to superior, anteriorly oblique) mandibular angle fracture in which muscle tractions increase the amount of displacement. Materials and Methods A virtual unfavorable fracture line was formed on the mandible models. Fracture lines were virtually fixed with 4-hole, 1.0 mm profile thickness mini-plates with bar and 5 mm long titanium screws. Mini plates were designed from two different materials (titanium alloy and CFR-PEEK). These plates were placed in three different positions (Position A: single miniplate from the lower side, Position B: double miniplate, Position C: single miniplate from the upper side). To simulate the bite forces, 200 N force (anterior incisor and posterior molar) was applied separately in the vertical direction. Results All-titanium miniplate systems were able to withstand 200N molar and anterior loads, but the double miniplate system showed the lowest stress value. CFR-PEEK plates could not show strength in single miniplate systems under 200N molar and anterior forces, they showed strength only in double miniplate systems. CFR-PEEK double plate system reduces the stress on the bone by approximately 40% in anterior and molar loadings compared to titanium miniplates placed in the same positions. Conclusion As a conclusion, to the titanium plates used in current practice, CFR-PEEK materials can also be used in the field of maxillofacial traumatology in the future.

___

  • 1.Oruç M, Işik VM, Kankaya Y, Gürsoy K, Sungur N, Aslan G, et al. Analysis of fractured mandible over two decades. J Craniofac Surg. 2016;27(6):1457–61.
  • 2. Dergin G, Emes Y, Aybar B. Evaluation and Management of Mandibular Fracture. Trauma Dent. 2019;1–16.
  • 3. Roselló EG, Granado AMQ, Garcia MA, Martí SJ, Sala GL, Mármol BB, et al. Facial fractures : classification and highlights for a useful report. Insights Imaging. 2020;11(49):1–15.
  • 4. Morris C, Bebeau NP, Brockhoff H, Tandon R, Tiwana P. Mandibular fractures: An analysis of the epidemiology and patterns of injury in 4,143 fractures. J Oral Maxillofac Surg. 2015;73(5):951.e1-951.e12.
  • 5. Haug RH, Prather J, Indresano AT. An epidemiologic survey of facial fractures and concomitant injuries. J Oral Maxillofac Surg. 1990 Sep;48(9):926-32.
  • 6. Braasch DC, Abubaker AO. Management of mandibular angle fracture. Oral Maxillofac Surg Clin North Am. 2013 ;25(4):591-600.
  • 7. Çizmeci O, Karabulut A. Mandibula Kırıkları ve Tedavi Prensipleri. Ulus Travma Derg. 1999;5(3):139–46. 8. Bohluli B, Mohammadi E, Oskui IZ, Moharamnejad N. Treatment of mandibular angle fracture: Revision of the basic principles. Chin J Traumatol. 2019;22(2):117-119.
  • 9. Bolourian R, Lazow S, Berger J. Transoral 2.0-mm miniplate fixation of mandibular fractures plus 2 weeks’ maxillomandibular fixation: A prospective study. J Oral Maxillofac Surg. 2002;60(2):167–70.
  • 10. Langford RJ, Frame JW. Surface analysis of titanium maxillofacial plates and screws retrieved from patients. Int J Oral Maxillofac Surg. 2002;31(5):511–8.
  • 11. Niinomi M, Liu Y, Nakai M, Liu H, Li H. Biomedical titanium alloys with Young’s moduli close to that of cortical bone. Regen Biomater. 2016;3(3):173–85.
  • 12. Güner AT, Meran C. Biomaterials Used in Orthopedic Implants. Pamukkale Univ J Eng Sci. 2020;26(1):54–67.
  • 13. Gareb B, van Bakelen NB, Dijkstra PU, Vissink A, Bos RRM, van Minnen B. Biodegradable versus titanium osteosynthesis in maxillofacial traumatology: a systematic review with meta-analysis and trial sequential analysis. Int J Oral Maxillofac Surg. 2020 ;49(7):914-931.
  • 14. Pan Z, Patil PM. Titanium osteosynthesis hardware in maxillofacial trauma surgery: to remove or remain? A retrospective study. Eur J Trauma Emerg Surg. 2014;40(5):587–91.
  • 15. Kurtz SM, Devine JN. PEEK biomaterials in trauma, orthopedic, and spinal implants. Biomaterials. 2007;28(32):4845-69.
  • 16. Koh YG, Park KM, Lee JA, Nam JH, Lee HY, Kang KT. Total knee arthroplasty application of polyetheretherketone and carbon-fiber-reinforced polyetheretherketone: A review. Mater Sci Eng C. 2019;100:70–81.
  • 17.Rotini R, Cavaciocchi M, Fabbri D, Bettelli G, Catani F, Campochiaro G, et al. Proximal humeral fracture fixation: multicenter study with carbon fiber peek plate. Musculoskelet Surg. 2015;99:1–8. 18. Panayotov IV, Orti V, Cuisinier F, Yachouh J. Polyetheretherketone (PEEK) for medical applications. J Mater Sci Mater Med. 2016;27(7).
  • 19. Bathala L, Majeti V, Rachuri N, Singh N, Gedela S. The Role of Polyether Ether Ketone (Peek) in Dentistry - A Review. J Med Life. 2019;12(1):5–9.
  • 20. Lovald ST, Wagner JD, Baack B. Biomechanical Optimization of Bone Plates Used in Rigid Fixation of Mandibular Fractures. J Oral Maxillofac Surg. 2009;67(5):973–85.
  • 21. Wang H, Ji B, Jiang W, Liu L, Zhang P, Tang W, et al. Three-Dimensional Finite Element Analysis of Mechanical Stress in Symphyseal Fractured Human Mandible Reduced With Miniplates During Mastication. J Oral Maxillofac Surg. 2010;68(7):1585–92.
  • 22. Kanubaddy SR, Devireddy SK, Rayadurgam KK, Gali R, Dasari MR, Pampana S. Management of Mandibular Angle Fractures: Single Stainless Steel Linear Miniplate Versus Rectangular Grid Plate—A Prospective Randomised Study. J Maxillofac Oral Surg. 2016;15(4):535–41.
  • 23. Sumitomo N, Noritake K, Hattori T, Morikawa K, Niwa S, Sato K, et al. Experiment study on fracture fixation with low rigidity titanium alloy: Plate fixation of tibia fracture model in rabbit. J Mater Sci Mater Med. 2008;19(4):1581–6.
  • 24. Millis DL. 7 - Responses of Musculoskeletal Tissues to Disuse and Remobilization. In: Millis D, Levine D, editors. Canine Rehabilitation and Physical Therapy (Second Edition) . Second Edition. St. Louis: W.B. Saunders; 2014: 92–153.
  • 25. Liu Y feng, Fan Y ying, Jiang X feng, Baur DA. A customized fixation plate with novel structure designed by topological optimization for mandibular angle fracture based on finite element analysis. Biomed Eng Online. 2017;16(1):1–17.
  • 26. Gerlach KL, Schwarz A. Bite forces in patients after treatment of mandibular angle fractures with miniplate osteosynthesis according to Champy. Int J Oral Maxillofac Surg. 2002;31(4):345–8.
  • 27. Sato FRL, Asprino L, Noritomi PY, Da Silva JVL, De Moraes M. Comparison of five different fixation techniques of sagittal split ramus osteotomy using three-dimensional finite elements analysis. Int J Oral Maxillofac Surg. 2012;41(8):934–41.
  • 28. Murphy MT, Haug RH, Barber JE. An in vitro comparison of the mechanical characteristics of three sagittal ramus osteotomy fixation techniques. J Oral Maxillofac Surg. 1997;55(5):489–94.
  • 29. Lill H, Hepp P, Korner J, Kassi JP, Verheyden AP, Josten C, et al. Proximal humeral fractures: How stiff should an implant be? A comparative mechanical study with new implants in human specimens. Arch Orthop Trauma Surg. 2003;123(2–3):74–81.
  • 30. Nurettin D, Burak B. Feasibility of carbon-fiber-reinforced polymer fixation plates for treatment of atrophic mandibular fracture: A finite element method. J Craniomaxillofac Surg. 2018 ;46(12):2182-2189.
  • 31. Victrex: TM PEEK 450CA30 30% carbon fiber reinforced. 2018. 32. Ayali A, Erkmen E. Three-Dimensional finite element analysis of different plating techniques for unfavorable mandibular angle fractures. J Craniofac Surg. 2018;29(3):603–7.
  • 33. Claes L, Augat P, Suger G, Wilke HJ. Influence of size and stability of the osteotomy gap on the success of fracture healing. J Orthop Res. 1997;15(4):577–84.