Chemical and Mineralogical Characteristics of the Microscopic-sized Epidotes in the Metamorphic Basement Rocks within the Late Cretaceous Hatip Ophiolitic Melange in Konya (Central Southern Turkey)

Chemical and Mineralogical Characteristics of the Microscopic-sized Epidotes in the Metamorphic Basement Rocks within the Late Cretaceous Hatip Ophiolitic Melange in Konya (Central Southern Turkey)

At the base of the Neotethyan ophiolitic melange, widespread epidote crystals formedin metamafic rocks of the metamorphic basement, which were experienced a regionalmetamorphism in green-schist facies conditions. The epidote crystals is subhedral to euhedral,with high Al2O3 (26-30 %) and low Fe2O3 (5–8%) contents. It is predominantlyzoisite (Xcz = 0.46 to 0.72) and subordinate epidote (Xep =0.27-0.53) in composition, withtypical compositional zoning due to variable substitution of Fe3+ and Al3+ on octahedralsites and sector-zoning. The epidote is suggested to have a possible igneous origin, and tobe crystallised from a wet (H2O>5 wt %) magma under low fO2 and intermediate pressureconditions during initial stage crystallisation on the basis of its petrographical andmineralogical characteristics.

___

  • 1. Haüy RJ. Traité de Mineralogie, (Vol. 2), 1822.
  • 2. Chukhrov VV. Minerals, (VV Chukhrov Ed. Vol. 3). Moscow, Nauka, 1972.
  • 3. Pattnaik SK. Petrology of the Bhela-Rajna alkaline complex, Nuapara District, Orissa. Journal of the Geological Society of India 48(1) (1996) 27-40.
  • 4. Leterrier J. (1972). Etude petrographique et geochimique du massif granitique de Querigut (Ariege). (PhD), Universite de Nancy, France.
  • 5. Cornelius HP. Geologische Beobachtungen im Gebiet des Fornogletschers (Engadin), (Vol. = Jg. 1913, Nr. 8, S. 246-252), 1913.
  • 6. Owen J. Significance of epidote in orbicular diorite from the Grenville Front zone, eastern Labrador. Mineralogical Magazine 55(379) (1991) 173-181.
  • 7. Owen JV. Geochemistry of Orbicular Diorite from the Grenville Front Zone, Eastern Labrador. Mineralogical Magazine 56(385) (1992) 451-458.
  • 8. Korinevskii VG. Magmatic epidote from gabbro. Russian Geology and Geophysics 49(3) (2008) 159-164.
  • 9. Evans BW, Vance JA. Epidote Phenocrysts in Dacitic Dikes, Boulder County, Colorado. Contributions to Mineralogy and Petrology 96(2) (1987) 178-185.
  • 10. Enami M, Liou JG, Mattinson CG. Epidote minerals in high P/T metamorphic terranes: Subduction zone and high- to ultrahighpressure metamorphism. Epidotes 56 (2004) 347-398.
  • 11. Nicollet C, Leyreloup A, Dupuy C. Chapter 14 - Petrogenesis of High Pressure Trondhjemitic Layers in Eclogites and Amphibolites from Southern Massif Central, France. In F Barker (Ed.), Developments in Petrology (Vol. 6, pp. 435-463): Elsevier.1979.
  • 12. Franz G, Smelik EA. Zoisite-clinozoisite bearing pegmatites and their importance for decompressional melting in eclogites. European Journal of Mineralogy 7(6) (1995) 1421-1436.
  • 13. Özcan A, Göncüoğlu MC, Turhan N, Şentürk K, Uysal Ş, Işık A. Konya-Kadınhanı-Ilgın dolayının temel jeolojisi (in Turkish) (1990). MTA Genel Müdürlüğü Jeoloji Etütleri Dairesi.
  • 14. Kaya RM. (2017). Karadiğin (Meram, Konya) Yöresi'ndeki Hatıp Ofiyolitli Karışığında Yer Alan Metamagmatiklerin Mineralojik Özellikleri. (MSc), Selcuk Uni., Konya.
  • 15. Dasci HT, Parlak O, Nurlu N, Billor Z. Geochemical characteristics and age of metamorphic sole rocks within a Neotethyan ophiolitic melange from Konya region (central southern Turkey). Geodinamica Acta 27(4) (2015) 223-243.
  • 16. Okay A, Tüysüz O. Tethyan sutures of northern Turkey. In: Durand B, Jolivet L, Horvárt, Séranne M (eds) The mediterranean basins: tertiary extension within the alpine Orogen. Geological Society London Special Publications 156 (1999) 475–515.
  • 17. Franz G, Liebscher A. Physical and chemical properties of the epidote minerals - An introduction. Epidotes 56 (2004) 1-+.
  • 18. Armbruster T, Bonazzi P, Akasaka M, et al. Recommended nomenclature of epidote-group minerals, (Vol. 18), 2006.
  • 19. Tulloch AJ. Secondary Ca-Al silicates as low-grade alteration products of granitoid biotite. Contributions to Mineralogy and Petrology 69(2) (1979) 105-117.
  • 20. Zen EA, Hammarstrom JM. Magmatic epidote and its petrologic significance. Geology 12(9) (1984) 515-518.
  • 21. Dawes RL, Evans BW. Mineralogy and Geothermobarometry of Magmatic Epidote-Bearing Dikes, Front Range, Colorado. Geological Society of America Bulletin 103(8) (1991) 1017-1031.
  • 22. de Oliveira MA, Dall'Agnol R, Scaillet B. Petrological Constraints on Crystallization Conditions of Mesoarchean Sanukitoid Rocks, Southeastern Amazonian Craton, Brazil. Journal of Petrology 51(10) (2010) 2121-2148.
  • 23. Schmidt MW, Poli S. Magmatic epidote. Epidotes 56 (2004) 399- 430.
  • 24. Tchameni R, Sun F, Dawai D, et al. Zircon dating and mineralogy of the Mokong Pan-African magmatic epidote-bearing granite (North Cameroon). International Journal of Earth Sciences 105(6) (2016) 1811-1830.
  • 25. Ismail A, Ghani AA. Magmatic epidote: probable absence and implication to the geobarometry of the granitic rocks from Peninsular Malaysia. Bulletin of the Geological Society of Malaysia 45 (2002) 231-234.
  • 26. Lugovic B, Segvic B, Altherr R. Petrology and tectonic significance of greenschists from the Medvednica Mts. (Sava Unit, NW Croatia). Ofioliti 31(1) (2006) 39-50.
  • 27. Qian JH, Wei CJ. P-T-t evolution of garnet amphibolites in the Wutai-Hengshan area, North China Craton: insights from phase equilibria and geochronology. Journal of Metamorphic Geology 34(5) (2016) 423-446.
  • 28. Howie RA, Walsh JN. The geochemistry and mineralogy of an epidote-glaucophanite from Hacava, Spišskogemerské rudohorie Mountains, West Carpathians, Czechoslovakia. Geol Práce 78 (1982) 59-64.
  • 29. Sial AN, Toselli A, Saavedra J, Ferreira VP, Rossi de Toselli JN. (1995). Magmatic epidote bearing granitoids from NW Argentina and NE Brazil. Paper presented at the Third Hutton Symposium. The Origin of granites and related rocks, Univ. of Maryland.
  • 30. Sial AN, Toselli AJ, Saavedra J, Parada MA, Ferreira VP. Emplacement, petrological and magnetic susceptibility characteristics of diverse magmatic epidote-bearing granitoid rocks in Brazil, Argentina and Chile. Lithos 46(3) (1999) 367-392.
  • 31. Koçak K, Kaya RM, Döyen A, Söğüt AR, Zedef V. Mineralogical and chemical characteristics of the amphibole minerals from the metamorphic sole rocks of the Late Cretaceous-aged Hatip ophiolitic melange in the Konya area (Central Southern Turkey). Selcuk Univ. J. Eng. Sci. Tech. 6(3) (2018) 519-528.
  • 32. Naney MT. Phase-Equilibria of Rock-Forming Ferromagnesian Silicates in Granitic Systems. American Journal of Science 283(10) (1983) 993-1033.
  • 33. Prouteau G, Scaillet B. Experimental constraints on the origin of the 1991 Pinatubo dacite. Journal of Petrology 44(12) (2003) 2203- 2241.
  • 34. Liou JG. Synthesis and Stability Relations of Epidote, Ca2Al2FeSi3O12 (OH). Journal of Petrology 14(3) (1973) 381-413.