İskemi Reperfüzyon Hasarında Stres ve Hücre Ölümü

İskemi-reperfüzyon hasarı, miyokard enfarktüsü, iskemik inme, akut böbrek hasarı, periferik arter hastalığı, orak hücre anemisi dahil olmak üzere çok çeşitli patolojilerin morbidite ve mortalitesinde rol oynar. İskemide kan akımındaki azalmanın derecesine ve süresine bağlı olarak hücreler metabolik ihtiyaçlarını karşılayamaz. Hızlı reperfüzyon, oksijen açlığı çeken hücrelerin kurtarılması için gerekli olmasına rağmen, hücrede oluşan oksijen paradoksu hücreleri strese sürükler. Reperfüzyon ile birlikte ortaya çıkan stres yanıtı sınırlandırılamazsa hücre ölüm programları aktive olarak hücre ölür. Bu derlemenin amacı iskemi reperfüzyon hasarında rol oynayan hücresel stres mekanizmalarını ve ölüm programlarını tanımlamaktır.

___

  • Kalogeris T., Baines P. C., Krenz M., Korthuis R.J. İschemia/ Reperfusion. Compr. Physiol. 2016;7(1):113-170.
  • Wu L., Xiong X., Wu X., et al. Targeting Oxidative Stress and Inflammation to Prevent Ischemia-Reperfusion Injury. Frontiers in Molecular Neuroscience 2020;13(28):1-34.
  • Mukherjeea A., Sarkarb S., Jana S., Swarnakar S., Das N. Neuroprotective role of nanocapsulated curcumin against cerebral ischemia-reperfusion induced oxidative injury. Brain Research 2019; 1704 () :164-173.
  • Shiyong L., Dawei J., Zachary T. R., Barnhart T.E., Ehlerding E.B., Ni D. et al. Aptamer-Conjugated Framework Nucleic Acids for the Repair of Cerebral Ischemia-Reperfusion Injury. Nano Letters 2019;19(10):7334-7341.
  • Wang Y., Luo J., Li S.Y. Nano-Curcumin Simultaneously Protects the Blood-Brain Barrier and Reduces M1 Microglial Activation During Cerebral Ischemia-Reperfusion Injury. ACS Appl Mater Interfaces 2019;11(4):3763-3770.
  • Xu X., Zhang L., Ye X., et al. Nrf2/ARE pathway inhibits ROS-induced NLRP3 inflammasome activation in BV2 cells after cerebral ischemia reperfusion. Inflammation Researh 2018;67(1):57-65.
  • Xing P., Ma K., Wu J., Long W., Wang D. Protective effect of polysaccharide peptide on cerebral ischemia‑reperfusion injury in rats. Molecular Medicine Reports 2018;18(6):5371-5378.
  • Kryl'skii E.D., Popova T.N., Safonova O.A., Stolyarova A.O., Razuvaev G.A., Carvalho M.A.P. Transcriptional Regulation of Antioxidant Enzymes Activity and Modulation of Oxidative Stress by Melatonin in Rats Under Cerebral Ischemia / Reperfusion Conditions. Neuroscience 2019;406():653-666.
  • Lorente L., Martín MM., Pérez-Cejas A., et al. Association between total antioxidant capacity and mortality in ischemic stroke patients. Annals of Intensive Care 2016;6(1):39.
  • Deng H., Zuo X., Zhang J., et al. Α‑lipoic acid protects against cerebral ischemia/reperfusion-induced injury in rats. Molecular Medicine Reports 2015;11(5):3659-3665.
  • Lin H.C., Narasimhan P., Liu S.Y., Chan P.H., Lai I. Postconditioning mitigates cell death following oxygen and glucose deprivation in PC12 cells and forebrain reperfusion injury in rats. Journal of Neuroscience Research 2015;93(1):140-148.
  • Touyz R.M. Reactive oxygen species, vascular oxidative stress, and redox signaling in hypertension: what is the clinical significance?. Hypertension 2004;44(3):248-252.
  • Pérez-Torres I., Guarner-Lans V., Rubio-Ruiz M.E. Reductive Stress in Inflammation-Associated Diseases and the Pro-Oxidant Effect of Antioxidant Agents. International Journal of Molecular Science 2017;8(10):2098.
  • Alp N., Channon K.M. Regulation of endothelial nitric oxide synthase by tetrahydrobiopterin in vascular disease. Arteriosclerosis, Thrombosis, and Vascular Biology 2004;24(3):413-420.
  • Vallance P. Endothelial regulation of vascular tone. Postgraduate Medical Journal 1992;68(803):697–701.
  • Pérez-Torres I., Manzano-Pech L., Rubio-Ruíz M. E., Soto M.E., Guarner-Lans V. Nitrosative Stress and Its Association with Cardiometabolic Disorders. Molecules. 2020;25(11):2555.
  • Shiva S., Sack M.N., Greer J.J., et al. Nitrite augments tolerance to ischemia/reperfusion injury via the modulation of mitochondrial electron transfer. Journal of Experimental Medicine 2007;204(9):2089-2102.
  • Pacher P., Beckman J.S., Liaudet L. Nitric oxide and peroxynitrite in health and disease. Physiological Reviews 2007;87(1):315-424.
  • Samdani A.F., Dawson T.D., Dawson V.L.. Nitric Oxide Synthase in Models of Focal Ischemia. Stroke 1997;28(6):1283-1288.
  • Huang Z., Huang P.L., Ma J., et al. Enlarged Infarcts in Endothelial Nitric Oxide Synthase Knockout Mice are Attenuated by Nitro-L-Arginine. Journal of Cerebral Blood Flow & Metabolism 1996; 16(5): 981-987.
  • Chabrier P., Auguet M., Spinnewyn B., et al. BN 80933, a dual inhibitor of neuronal nitric oxide synthase and lipid peroxidation: A promising neuroprotective strategy. PNAS 1999; 96(19):10824-10829.
  • Parmentier S., Böhme G.A., Lerouet D., et al. Selective inhibition of inducible nitric oxide synthase prevents ischaemic brain injury. British Journal of Pharmacology 2009;127(2):546-552.
  • Benhar M., Forrester M., Stamler J.S. Protein denitrosylation: enzymatic mechanisms and cellular functions. Nature reviews molecular cell biology 2009;10(10):721-732.
  • Lima B., Forrester T.M., Hess T.D., Stamler J.S. S-Nitrosylation in Cardiovascular Signaling. Circulation Research 2011;106(4):633-646.
  • Sun J., Murphy E. Protein S-nitrosylation and cardioprotection. Circulation Research 2010;106(2):285-296.
  • Greenacre S.A.B., Ischiropoulos H. Tyrosine nitration: Localisation, quantification, consequences for protein function and signal transduction. Free radical research 2001;34(6):541-581.
  • Zielonka J., Sikora A., Joseph J., Kalyanaraman B. Peroxynitrite is the major species formed from different flux ratios of co-generated nitric oxide and superoxide: direct reaction with boronate-based fluorescent probe. The Journal of Biological Chemistry 2010; 285(19):14210-14216.
  • Moroa M.A., Almeida A., Bolaños J.P., Lizasoain I. Mitochondrial respiratory chain and free radical generation in stroke. Free Radical Biology and Medicine 2005; 39(10): 1291-1304.
  • Shi H., Noguchi N., Xu Y., Niki E. Formation of Phospholipid Hydroperoxides and Its Inhibition by α-Tocopherol in Rat Brain Synaptosomes Induced by Peroxynitrite. Biochemical and Biophysical Research Communications 1999;257(3):651-656.
  • Nanetti L., Taffi R., Vignini A., et al. Reactive oxygen species plasmatic levels in ischemic stroke. Molecular and cellular biochemistry 2007;303(1-2):19-25.
  • Paolocci N., Ekelund U., Isoda T., et al. cGMP-independent inotropic effects of nitric oxide and peroxynitrite donors: potential role for nitrosylation. American Journal of Physiology-Heart and Circulatory Physiology 2000;279(4):1982-1988.
  • Ischiropoulos H. Biological selectivity and functional aspects of protein tyrosine nitration. Biochemical and Biophysical Research Communications 2003;305(3):776-783.
  • Fajardo N.M.P., Meijer C., Kruyt F.A.E. The endoplasmic reticulum stress/unfolded protein response in gliomagenesis, tumor progression and as a therapeutic target in glioblastoma. Biochemical Pharmacology 2016;118():1-8.
  • Urano F., Wang X., Bertolotti A., et al. Coupling of Stress in the ER to Activation of JNK Protein Kinases by Transmembrane Protein Kinase IRE1. Science 2000;287(5453): 664-666.
  • Yoneda T., Imaizumi K., Oono K., et al. Activation of Caspase-12, an Endoplastic Reticulum (ER) Resident Caspase, through Tumor Necrosis Factor Receptor-associated Factor 2-dependent Mechanism in Response to the ER Stress. Journal of Biological Chemistry 2001;276(17):3935-13940.
  • Martindale J.J., Fernandez R., Thuerauf D., et al. Endoplasmic Reticulum Stress Gene Induction and Protection From Ischemia/Reperfusion Injury in the Hearts of Transgenic Mice With a Tamoxifen-Regulated Form of ATF6. Circulation Research 2006;98(9):1186–1193.
  • Ishida K.S., Nakajima M., Uemura K., Yoshida K. Ischemic preconditioning protects cardiomyocytes against ischemic injury by inducing GRP78. Biochemical and Biophysical Research Communications 2006;345(4):1600-1605.
  • Weigand K., Brost S., Steinebrunner N., Büchler M., Schemmer P., Müller M. Ischemia/Reperfusion Injury in Liver Surgery and Transplantation: Pathophysiology. Hepato-Pancreato-Biliary (HPB) Surgery 2012; 2012(176723):1-8.
  • Hartley T., Siva M., Lai E., Teodoro T., Zhang L., Volchuk A. Endoplasmic reticulum stress response in an INS-1 pancreatic beta-cell line with inducible expression of a folding-deficient proinsulin. BMC Molecular and Cell Biology 2010;11(59):1-18.
  • Szegezdi E., Duffy A., O’Mahoney M.E., et al. ER stress contributes to ischemia-induced cardiomyocyte apoptosis. Biochemical and Biophysical Research Communications 2006;349(4):1406-1411.
  • Ruan Y., Zeng J., Jin Q., et al. Endoplasmic reticulum stress serves an important role in cardiac ischemia/reperfusion injury. Experimental and Therapeutic Medicine 2020;20(6): 268.
  • Murphy E., Steenbergen C. Mechanisms underlying acute protection from cardiac ischemia-reperfusion injury. Physiological Reviews 2008;88(2):581-609.
  • Tabas I., Ron D. Integrating the mechanisms of apoptosis induced by endoplasmic reticulum stress. Nature Cell Biology 2011;13(3):184-190.
  • Vitadello M., Penzo D., Petronilli V., et al. Overexpression of the stress protein Grp94 reduces cardiomyocyte necrosis due to calcium overload and simulated ischemia. The FASEB Journal 2003;17(8):923-925.
  • Zheng D., Wang G., Li S., Fan G., Peng T. Calpain-1 induces endoplasmic reticulum stress in promoting cardiomyocyte apoptosis following hypoxia/reoxygenation. Biochimica et Biophysica Acta 2015;1852(5): 882-892.
  • Muñoz J.P., Ivanova S., Sánchez-Wandelmer J., et al. Mfn2 modulates the UPR and mitochondrial function via repression of PERK. The EMBO Journal 2013;32(17):2348-2361.
  • Cao L., Chen Y., Zhang Z., Li Y., Zhao P. Endoplasmic Reticulum Stress-Induced NLRP1 Inflammasome Activation Contributes to Myocardial Ischemia/Reperfusion Injury. Shock 2019;51(4):511-518.
  • Yi Y. Role of inflammasomes in inflammatory autoimmune rheumatic diseases. The Korean Journal of Physiology & Pharmacology 2018;22(1):1-15.
  • Zhang G., Wang X., Gillette T.G, Deng Y., Wang Z. Unfolded Protein Response as a Therapeutic Target in Cardiovascular Disease. Current Topics in Medicinal Chemistry 2019;19(21):1902-1917.
  • Asada R., Kanemoto S., Kondo S., Saito A., Imaizumi K. The signalling from endoplasmic reticulum-resident bZIP transcription factors involved in diverse cellular physiology. Journal of Biochemistry 2011;149(5):507-518.
  • Jin J.K., Blackwood E.A., Azizi K., et al. ATF6 Decreases Myocardial Ischemia/Reperfusion Damage and Links ER Stress and Oxidative Stress Signaling Pathways in the Heart. Circulation Research 2017;120(5):862-875.
  • Zhang C., Tang Y., Li Y., et al. Unfolded protein response plays a critical role in heart damage after myocardial ischemia/reperfusion in rats. PLoS One 2017;12(6):e0179042.
  • Ibuki T., Yamasaki Y., Mizuguchi H., Sokabe M. Protective effects of XBP1 against oxygen and glucose deprivation/reoxygenation injury in rat primary hippocampal neurons. Neuroscience 2012;518(1):45-48.
  • McCullough K.D., Martindale J.L., Klotz L.O., Aw T.Y., Holbrook N.J. Gadd153 sensitizes cells to endoplasmic reticulum stress by down-regulating Bcl2 and perturbing the cellular redox state. Molecular and Cellular Biology 2001;21(4):1249-12559.
  • Ghosh A.P., Klocke B.J., Ballestas M.E., Roth K.A. CHOP potentially co-operates with FOXO3a in neuronal cells to regulate PUMA and BIM expression in response to ER stress. PLoS One 2012;7(6): e39586.
  • Meyer G., Martinet W. Autophagy in the cardiovascular system. Biochimica et Biophysica Acta (BBA)-Molecular Cell Research 2009;1793(9): 1485-1495.
  • Newmeyer D.D., Ferguson-Miller S. Mitochondria: releasing power for life and unleashing the machineries of death. Cell 2003;112(4):481-490.
  • Di Lisa F, Canton M, Menabò R., Kaludercic N., Bernardi P. Mitochondria and cardioprotection. Heart Failure Reviews 2007;12(3-4):249-260.
  • Grover G.J., Atwal K.S., Sleph P.G., et al. Excessive ATP hydrolysis in ischemic myocardium by mitochondrial F1F0-ATPase: effect of selective pharmacological inhibition of mitochondrial ATPase hydrolase activity. American Journal of Physiology-Heart and Circulatory 2004;287(4):1747-1755.
  • Sesti C., Simkhovich B.Z., Kalvinsh I., Kloner R.A. Mildronate, a novel fatty acid oxidation inhibitor and antianginal agent, reduces myocardial infarct size without affecting hemodynamics. Journal of Cardiovascular Pharmacology 2006;47(3):493-499.
  • Lisa F.D., Kaludercic N., Carpi A., Menabo R., Giorgio M. Mitochondrial pathways for ROS formation and myocardial injury: the relevance of p66(Shc) and monoamine oxidase. Basic Research in Cardiology 2009;104(2):131-139.
  • Dunn J.D., Alvarez L.A., Zhang X., Soldati T. Reactive oxygen species and mitochondria: A nexus of cellular homeostasis. Redox Biology 2015;6():472-485.
  • Giedt R.J., Yang C., Zweier J.L., Matzavinos A., Alevriadou B.R. Mitochondrial fission in endothelial cells after simulated ischemia/reperfusion: role of nitric oxide and reactive oxygen species. Free Radical Biology Medicine 2012;52(2):348-356.
  • Chen L., Knowlton A.A. Mitochondria and heart failure: new insights into an energetic problem. Minerva Cardioangiologica 2010; 8(2):213-229.
  • Ong S.B., Subrayan S., Lim S.Y., Yellon D.M., Davidson S.M., Hausenloy D.J. Inhibiting mitochondrial fission protects the heart against ischemia/reperfusion injury. Circulation 2010;121(18):2012-22.
  • Lejay A., Meyer A., Schlagowski A.I., et al. Mitochondria: mitochondrial participation in ischemia-reperfusion injury in skeletal muscle. International Journal of Biochemistry Cell Biology 2014;50():101-105.
  • Kroemer G., Galluzzi L., Brenner C. Mitochondrial membrane permeabilization in cell death. Physiological Reviews 2007;87(1):99-163.
  • Broughton B.R., Reutens D.C., Sobey C.G. Apoptotic mechanisms after cerebral ischemia. Stroke 2009;40(5):e331-339.
  • Galle P.R., Hofmann W.J., Walczak H., et al. Involvement of the CD95 (APO-1/Fas) receptor and ligand in liver damage. The Journal of Experimental Medicine 1995;182(5):1223-1230.
  • Hochhauser E., Cheporko Y., Yasovich N., et al. Bax deficiency reduces infarct size and improves long-term function after myocardial infarction. Cell Biochemistry and Biophysics 2007;47(1):11-20.
  • Sciarretta S., Yee D., Ammann P, et al. Role of NADPH oxidase in the regulation of autophagy in cardiomyocytes. Clinical Science (Lond) 2015;128(7):387-403.
  • Cardinal J., Pan P., Tsung A. Protective role of cisplatin in ischemic liver injury through induction of autophagy. Autophagy 2009;5(8):1211-1212.
  • Gottlieb R.A., Gustafsson A.B. Mitochondrial turnover in the heart. Biochimica Biophysica Acta 2011;1813(7):1295-1301.
  • Levine B, Kroemer G. Autophagy in the pathogenesis of disease. Cell 2008;132(1):27-42.
  • He B., Xiao J., Ren A.J., et al. Role of miR-1 and miR-133a in myocardial ischemic postconditioning. Journal of Biomedical Science 2011;18(1):22.
  • Mengesdorf T., Jensen P.H., Mies G., Aufenberg J., Paschen W. Down-regulation of parkin protein in transient focal cerebral ischemia: A link between stroke and degenerative disease? PNAS 2002;99(23):15042-15047.
  • Andrabi S.A., Dawson T.M., Dawson V.L. Mitochondrial and nuclear cross talk in cell death: parthanatos. Annals Of The New York Academy Of Sciences 2008;1147:233-241.
  • Halestrap AP. A pore way to die: the role of mitochondria in reperfusion injury and cardioprotection. Biochemical Society Transactions 2010;38(4):841-860.
  • Cao J.Y., Dixon S.J. Mechanisms of ferroptosis. Celluler and Moleculer Life Science 2016;73(11-12):2195-2209.
  • Smith C.C., Yellon D.M. Necroptosis, necrostatins and tissue injury. Journal of Celluler and Molecular Medicine 2011;15(9):1797-1806.
  • Ong S.B., Samangouei P., Kalkhoran S.B., Haunsenloy D. The mitochondrial permeability transition pore and its role in myocardial ischemia reperfusion injury. Journal of Celluler and Molecular Cardiology 2015;78():23-34.
  • Fasanaro P., Greco S., Ivan M., Capogrossi M.C., Martelli F. microRNA: emerging therapeutic targets in acute ischemic diseases. Pharmacology Therapeutics 2010;125(1):92-104.
  • Wang Y., Dawson V.L., Dawson T.M. Poly(ADP-ribose) signals to mitochondrial AIF: a key event in parthanatos. Experimental Neurology 2009;218(2):193-202.
  • Pallast S., Arai K., Pekcec A., et al. Increased nuclear apoptosis-inducing factor after transient focal ischemia: a 12/15-lipoxygenase-dependent organelle damage pathway. Journal Of Cerebral Blood Flow And Metabolism 2010;30(6):1157-67.
  • Conrad M., Angeli J.P., Vandenabeele P., Stockwell B.R. Regulated necrosis: disease relevance and therapeutic opportunities. Nature Reviews Drug Discovery 2016;15(5):348-366.