Türkiye’de Yetiştirilen Siyah Alaca İneklerin Doğrusal Tip Özellikleri, Birinci Laktasyon Karlılığı ve Verim Özellikleri Arasındaki Genotopik Korelasyonlar

Amaç: Bu çalışmanın amacı, ıslah programlarında kullanılmak üzere doğrusal tip özellikleri, verim özellikleri ve birinci laktasyon karlılığı arasındaki genetik korelasyonların tespitini yapmaktır. Materyal ve Metot: Araştırma 2012-2017 yılları arasında Hatay ilinde yürütülmüştür. Araştırmada toplam 810 baş birinci laktasyonda olan inek kullanılmıştır. Genetik parametrelerinin varyans ve kovaryanslarının analizi ise Multivariate Limited Maximum Likelihood testi ile gerçekleştirilmiştir. Bulgular: Ortalama inek başına birinci laktasyon net kar, 305-gün süt verimi, ilk buzağılama yaşı, ilk tohumlamada gebe kalma oranı ve kolay doğum oranı 540 US$, 6008 kg, 793 gün, %61.6 ve %91.7 olarak belirlenmiştir. Doğrusal tip özellikleri ile verim özelliklerinin kalıtım dereceleri sırasıyla; 0.10-0.42 ve 0.04-0.39 arasında tahmin edilmiştir. Birinci laktasyon karlılığı ile doğrusal tip özellikleri arasındaki genetik korelasyonlar -0.08 ve 0.42 arasında, birinci laktasyon karlılığı ile verim özellikleri arasındaki korelasyonlar 0.06 ve 0.34. arasında tahmin edilmiştir. Birinci laktasyon karlılığı ile en yüksek korelasyonu meme merkez bağı (0.42) gösterirken, en düşük korelasyonu meme derinliği (-0.08) göstermiştir. Yine birinci laktasyon karlılığı ile en yüksek korelasyonu süt proteini verimi (0.34) gösterirken, en düşük korelasyonu ilk tohumlamada gebe kalma oranı (0.09) göstermiştir. Doğrusal tip özellikleri ile verim özellikleri arasındaki genetik korelasyonlar -0.42 (Ayak açısı ve ilk tohumlamada gebe kalma oranı) ile 0.49 (Sütçü tip özelliği ve 305-gün süt verimi) arasında değişiklik göstermiştir. Sonuç: Araştırma sonuçları, birinci laktasyondaki daha fazla sütçü tipe sahip, ön meme bağlantısı güçlü, güçlü ayak ve bacak yapısına sahip ineklerin, birinci laktasyonda daha karlı olduklarını ve süt sığırı ıslah programlarında doğrusal tip özellikleri ile verim özellikleri arasındaki bu genetik korelasyonlardan yararlanılarak, daha isabetli seleksiyon yapılabileceğini ortaya koymuştur.

Genotypic Correlations among First Lactation Profitability, Linear Type Traits and Production Characteristics of Holstein Friesian Cows in Turkey

Objective: The aim of this study is to determine genetic correlations between lineartype traits, yield characteristics and first lactation profitability for use in selectionprograms.Material and Methods: The research was carried out in Hatay province between 2012-2017. A total of 810 cows in the first lactation were used in the study. Analysis ofvariance and covariances of genetic parameters was carried out with MultivariateLimited Maximum Likelihood test.Results: The average first lactation net profit, 305-d milk yield, first calving age,conception rate at first service, and calving ease rate were determined as 540 US$, 6008kg, 793 d, 61.6%, and 91.7%, respectively. Heritabilities of linear type and productiontraits ranged from 0.10 to 0.42 and 0.04 to 0.39, respectively. The genetic correlationsbetween first lactation profitability and type traits ranged from -0.08 and 0.42, whilebetween first lactation profitability and production traits ranged from 0.06 and 0.34. Thehighest genetic correlation was between first lactation profitability and central ligament(0.42), while the lowest genetic correlation was between first lactation profitability andudder depth (-0.08). The highest genetic correlation was between first lactationprofitability and lactation protein yield (0.34), while the lowest genetic correlation wasbetween first lactation profitability and conception rate at first service (0.09). Geneticcorrelations between type and production traits varied from -0.42 (FA and CFS) to 0.49(DC and 305-d MY).Conclusion: These results showed that primiparous cows having more angular, strongfore udder attachments, strong foot and legs structure were more profitable andopportunities of selection programs by using genetic correlations between linear typetraits and production characteristics. It also concluded that the first lactationprofitability could be used successfully in Turkish dairy cattle breeding programs.

___

  • Anonymous. 2018. Official rules governing type classification. Brown Swiss Cattle Breeders’ Association of the U.S.A. http://www.brownswissusa.com (25 May 2018).
  • Banos G, Brotherstone S, Coffey MP. 2007. Prenatal maternal effects on body condition score, female fertility and milk yield of dairy cows. Journal of Dairy Science, 90: 3490-3499. DOI:https://doi.org/10.3168/jds.2006-809.
  • Berry DP, Buckley F, Dillon P, Evans RD, Rath M, Veerkamp. RF. 2003. Genetic reletionships among body condition score, body weight, milk yield and fertility in dairy cows. Journal of Dairy Science, 86: 2193-2204. DOI:https://doi.org/10.3168/jds.S0022- 0302(03)73809-0.
  • Berry DP, Buckley F, Dillon P, Evans RD, Veerkamp RF. 2004. Genetic relationships among linear type traits, milk yield, body weight, fertility and somatic cell count in primiparous dairy cows. Irish Journal of Agricultural and Food Research, 43: 161-176.
  • Biffani S, Marusi M, Biscarini F, Canavesi F. 2005. Developing a genetic evaluation for fertility using angularity and milk yields as correlated traits. Interbull Bulletin, 33: 63-66.
  • Bohlouli M, Alijani S, Varposhti MR. 2015. Genetic relationships among linear type traits and milk production traits of Holstein dairy cattle. Annals of Animal Science, 15(4): 903–917. DOI: https://doi.org/10.1515/aoas-2015-0053.
  • Boldman KG, Kriese LA, Van Vleck CP, Van Tassell CP, Kachman SD. 1995. A Manual for Use of MTDFREML: A Set of Programs to Obtain Estimates of Variances and Covariances. Usd-Ars, Clay Center, Nebraska, USA.
  • Brotherstone S. 1994. Genetic and phenotypic correlations between linear type traits and production traits in Holstein Friesian dairy cattle. Animal Production, 59: 183-188.
  • Caraviello DZ, Weigel KA, Gianola D. 2003. Analysis of the relationship between type traits, inbreeding, and functional survival in Jersey cattle using a Weibull Proportional Hazards Model. Journal of Dairy Science, 86 (9): 2984-2989. DOI:https://doi.org/10.3168/jds.S0022-0302(03)73896-X.
  • Cue RI, Monardes HG, Hayes JF. 1990. Relationships of calving ease with type traits. Journal of Dairy Science, 73: 3586–3590. DOI:https://doi.org/10.3168/jds.S0022-0302(90)79060-1.
  • Chauhan VPS, Hayes JF. 1991. Genetic parameters for first lactation milk production and composition traits for Holsteins using multivariate restricted maximum likelihood. Journal of Dairy Science, 74: 603-610. DOI:https://doi.org/10.3168/jds.S0022- 0302(91)78207-6.
  • Dahiya SP. 2005. Linear functional type traits for reproductive efficiency in Hariana cows. Indian Journal of Animal Sciences, 75 (5): 524-527.
  • Dahiya S, Kumar S, Kumar M. 2020. Current status of research on linear type traits in Indian cattle and future strategies. Tropical Animal Health and Production, 52(4): (electronically published), DOI: https://doi.org/10.1007/s11250-020-02302-w.
  • Dal Zotto R, De Marchi M, Dalvit C, Cassandro M, Gallo L, Carnier P, Bittante G. 2007. Heritabilities and genetic correlations of body condition score and calving interval with yield, somatic cell score, and linear type traits in Brown Swiss cattle. Journal of Dairy Science, 90: 5737–5743. DOI: https://doi.org/10.3168/jds.2007- 0280.
  • Darwash AO, Lamming GE, Woolliams JA. 1997. Estimation of genetic variation in the interval from calving to postpartum ovulation of dairy cows. Journal of Dairy Science, 80: 1227–1234. DOI:https://doi.org/10.3168/jds.S0022-0302(97)76051-X.
  • DeGroen AF, Steine T, Colleau JJ, Pedersen J, Pribyl J, Reinsch N. 1997. Economic values in dairy cattle, with special reference to functional traits. Report of an EAAP-working group. Livestock Production Science, 49: 1–21 DOI:https://doi.org/10.1016/S0301-6226(97)00041-9.
  • Dematawewa CM, Berger PJ. 1998. Genetic and phenotypic parameters for 305- day yield, fertility, and survival in Holsteins. Journal of Dairy Science, 81: 2700–2709. DOI:https://doi.org/10.3168/jds.S0022-0302(98)75827-8.
  • Forabosco F, Groen AF, Bozzi R, Van Arendonk JAM, Filippini F, Boettcher P, Bijma P. 2004. Phenotypic relationships between longevity, type traits, and production in Chianina beef cattle. Journal of Animal Science, 82 (6): 572-1580. DOI:https://doi.org/10.2527/2004.8261572x.
  • Forabosco F, Bozzi R, Boettcher P, Filippini F, Bijma P, Van Arendonk JAM. 2005. Relationship between profitability and type traits and derivation of economic values for reproduction and survival traits in Chianina beef cows. Journal of Animal Science, 83 (9): 2043- 2051. DOI:https://doi.org/10.2527/2005.8392043x.
  • Gengler N, Wiggans GR, Wright JR. 1999. Animal model genetic evaluation of type traits for five dairy cattle breeds. Journal of Dairy Science, 82 (6): 1350.e1-1350.e22. DOI:https://doi.org/10.3168/jds.S0022-0302(99)75359-2.
  • Gredler B, Fuerst C, Sölkner J. 2007. Analysis of new fertility traits for the joint genetic evaluation in Austria and Germany. Interbull Bulletin, 37: 152–155.
  • Gökçe G, Burgut A. 2019. Evaluation of Holstein cattle raised in research and application farm according to linear type traits. Çukurova Journal of Agricultural and Food Science, 34(1):17-26.
  • Hyppänen K, Juga J. 1998. Environmental and genetic effects on the 60-day nonreturn rate in Finnish AI bulls. Interbull Bulletin, 18: 92-95.
  • ICAR, 2010. International Committee for Animal Recording (ICAR). International agreement of recording practices. Guidelines Approved by the General Assembly Held in Riga, Latvia on June 2010, 527 p.
  • Kadarmideen HN. 2004. Genetic correlations among body condition score, somatic cell score, milkproduction, fertility and conformation traits in dairy cows. Animal Science, 79: 191-201. DOI:https://doi.org/10.1017/S1357729800090056.
  • Karslıoğlu-Kara N, Koyuncu M, Tuncel E. 2010. Longevity and Reasons for Culling in Holstein Dairy Cows. Journal of Animal Production, 51(1): 16-20.
  • Makgahlela ML, Mostert BE, Banga CB. 2009. Genetic relationships between calving interval and linear type traits in South African Holstein and Jersey cattle. South African Journal of Animal Science, 39 (1): 90-92. DOI:https://doi.org/10.4314/sajas.v39i1.61221.
  • Mitchell RG, Rogers GW, Dechow CD, Vallimont JE, Cooper JB, Sander- Nielsen U, Clay JS. 2005. Milk urea nitrogen concentration: Heritability and genetic correlations with reproductive performance and disease. Journal of Dairy Science, 88: 4434–4440. DOI:https://doi.org/10.3168/jds.S0022- 0302(05)73130-1.
  • Mrode RA, Swanson GJT. 1994. Genetic and phenotypic relationships between conformation and production traits in Ayrshire heifers. Animal Production, 58: 335-338. DOI:https://doi.org/10.1017/S0003356100007261.
  • Némcová E, Štipková M, Zavadilová L. 2011. Genetic parameters for linear type traits in Czech Holstein cattle. Czech Journal of Animal Science, 4: 157-162. DOI:https://doi.org/10.17221/1435-CJAS.
  • Peréz-Cabal MA, Alenda R. 2002. Genetic relationships between lifetime profit and type traits in spanish Holstein cows. Journal of Dairy Science, 85: 3480-3491. DOI:https://doi.org/10.3168/jds.S0022-0302(02)74437-8.
  • Peréz-Cabal MA, Garcia C, Gonzáles-Recio O, Alenda R. 2005. Genetic and phenotipic reletionships among locomotion type traits, profit, production, longevity, and fertility in Spanish dairy cows. Journal of Dairy Science, 89: 1776-1783. DOI:https://doi.org/10.3168/jds.S0022-0302(06)72246-9
  • Prestes Almeida T, Lurdes Kern E, dos Santos Daltro D, Neto JB, McManus C, Neto AT, Cobuci JA. 2017. Genetic associations between reproductive and linear-type traits of Holstein cows in Brazil. Brazilian Journal of Animal Science, 46(2): 91-98.
  • Pryce JE, Coffey MP, Simm G. 2001. The relationship between body condition score and reproductive performance. Journal of Dairy Science, 84: 1508–1515. DOI:https://doi.org/10.3168/jds.S0022- 0302(01)70184-1.
  • Pryce JE, Royal MD, Garnsworthy PC, Mao IL. 2004. Fertility in the high producing dairy cow. Livestock Production Science, 86:125- 135. DOI:https://doi.org/10.1111/j.1439-0531.2007.00906.x.
  • Shapiro LS, Swanson LV. 1991. Relationships Among Rump and Rear Leg Type Traits and Reproductive Performance in Holsteins. Journal of Dairy Science, 74: 2767-2773.
  • SPSS, 2015. SPSS for Windows, Version 2. SPSS Inc., Chicago, IL., USA.
  • Short TH, Lawlor TJ, Lee JR, Lee KL. 1991. Genetic parameters for three experimantal linear type traits. Journal of Dairy Science, 74: 2020–2025. DOI:https://doi.org/10.3168/jds.S0022- 0302(91)78372-0.
  • Sewalem A, Kistemaker GJ, Van Doormaal BJ. 2005. Relationship between type traits and longevity in Canadian Jerseys and Ayrshires using a Weibull proportional hazards model. Journal of Dairy Science, 88 (4): 1552-1560. DOI:https://doi.org/10.3168/jds.S0022-0302(05)72824-1.
  • Sewalem A, Miglior F, Kistemaker GJ, Sullivan P, Van Doormaal BJ. 2008. Relationship between reproduction traits and functional longevity in canadian dairy cattle. Journal of Dairy Science, 91 (4): 1660-1668. DOI:https://doi.org/10.3168/jds.2007-0178.
  • Špehar M, Štepec M, Potočnik K. 2012. Variance components estimation for type traits in Slovenian Brown Swiss cattle. Acta Agriculturae Slovenica, 100 (2): 107-115.
  • Sun C, Madsen P, Lund MS, Zhang Y, Nielsen US, Su G. 2010. Improvement in genetic evaluation of female fertility in dairy cattle using multiple-trait models including milk production traits. Journal of Animal Science, 88: 871-878. DOI:https://doi.org/10.2527/jas.2009-1912.
  • Tiezzi F, Maltecca C. 2011. Selecting for female fertility: What can be learned from the dairy experience. Beef Improvement Federation, Research Symposium & Annual Meeting, p. 47-60, Montana, U.S.A.
  • Toghiani S. 2011. Genetic parameters and correlations among linear type traits in the first lactation of Holstein dairy cows. African Journal of Biotechnology, 10 (9): 1507-1510.
  • Toghiani S. 2012. Genetic relationships between production traits and reproductive performance in Holstein dairy cows. Archiv fur Tierzucht, 55 (5): 458-468. DOI:https://doi.org/10.5194/aab-55- 458-2012.
  • Veerkamp RF, Brotherstone S. 1997. Genetic correlations between linear type traits, food intake, live weight and condition score in Holstein dairy cattle. Animal Science, 64: 385-392. DOI: https://doi.org/10.1017/S1357729800015976.
  • Viegas Campos R, Cobuci JA, Kern EL, Costa CN, McManus CM. 2015. Genetic parameters for linear type traits and milk, fat, and protein production in Holstein cows in Brazil. Asian Australasian Journal of Animal Sciences, 28(4):476-484. DOI: http://dx.doi.org/10.5713/ajas.14.0288
  • Vollema ANTR, Groen ABF. 1997. Genetic correlations between longevity and conformation traits in an upgrading dairy cattle populations. Journal of Dairy Science, 80: 3006–3014. DOI:Https://doi.org/ 10.3168/jds.S0022-0302(97)76267-2.
  • Weigel KA, Rekaya R. 2000. Genetic parameters for reproductive traits of Holstein cattle in California and Minnesota. Journal of Dairy Science, 83: 1072-1080. DOI: https://doi.org/10.3168/jds.S0022- 0302(00)74971-X.
  • Wilson RD. 1979. A new system of evaluations. Hoard’s Dairy Man, 124, 1536-1537.
  • Yaylak E. 2007. Phenotypic Correlations among Type Traits of Holstein Cows. Journal of Animal Production, 48(2): 19-26.
  • Zwald NR, Weigel KA, Chang YM, Welper RD, Clay JS. 2004.Genetic selection for health traits using producer-recorded data. I. Incidence rates, heritability estimates, and sire breeding values. Journal of Dairy Science, 87: 4287-4294. DOI:https://doi.org/10.3168/jds.S0022-0302(04)73573-0.
Hayvansal Üretim-Cover
  • ISSN: 1301-9597
  • Başlangıç: 1974
  • Yayıncı: EGE ZOOTEKNİ DERNEĞİ
Sayıdaki Diğer Makaleler

İklim Değişikliğinin Sürdürülebilir Hayvancılığa Etkileri

Mehmet KOYUNCU, Farida NAGEYE

Günlük yaştaki etlik civcivlerde taşıma süresi ve taşıma sırasında yem ve suya ulaşımın gelişme performansı ve organ gelişimine etkileri

Tarek BOUSSAADA, Derradji OUACHEM, Tahir SHAH, Sezen ÖZKAN

Bal Arısı Yetiştiriciliğinde Yerel Kışlatma Alanlarına Yönelik Bir Değerlendirme: Cizre Örneği*

Önder ÖZTÜRK, Cengiz ERKAN

Yozgat İli Küçükbaş Hayvan Yetiştiriciliğinin Yapısal Durumu ve Geliştirme Olanaklarının Belirlenmesi

Hacer TÜFEKCİ

Broyler Karma Yemlerine İlave Edilen Kekik Yağı (Orıganum vulgare) ve Keçiboynuzu (Ceratonia siliqua l.) Karışımının Besi Performansı, Karkas Parametreleri ve Bazı İç Organ Ağırlıkları Üzerine Etkisi

Tarkan ŞAHİN, Ali ADIGÜZEL, Mükremin ÖLMEZ, Özlem KARADAĞOĞLU

Çiftlik Hayvanlarında Genetik Mesafe Temelli Filogenetik İlişkinin Belirlenmesinde Otozomal SSR ve PCR-RFLP Markerlerinin Karşılaştırılması

Taki KARSLI, Eymen DEMİR, Bahar ARGUN KARSLI, Hüseyin Göktuğ FİDAN, Murat BALCIOĞLU

Genotypic Correlations among First Lactation Profitability, Linear Type and Production Traits of Black and White Cows in Turkey

İbrahim TAPKI, Nuran TAPKI, Yusuf Ziya GÜZEY, Muhammet Hanifi SELVİ

Süt Tüketiminde Laktoz Duyarlılığının (İntolerans) Analizi: İzmir İli Bornova İlçesi Örneği

Awo Abdoulaye GBADAMONSİ, Aysar Shihab AHMED, Alpha SALOUM CİSSE, Ahmed SEİOUDY, Turgay TAŞKIN, Sait ENGİNDENİZ, Çağrı KANDEMİR, Nedim KOŞUM

Yalova Genotipinin Morfolojik Özellikleri Üzerine Bazı Çevre Faktörlerinin Etkileri

Emre ALARSLAN, Turgut AYGÜN

Doğu Anadolu Bölgesinde Kaz Eti Üretiminde Organik Üretim Olanaklarının Değerlendirilmesi

Hülya HANOĞLU ORAL, İbrahim AK