Uçak Kanatlarının Değişiminin Geçmişten Geleceğe İncelenmesi

Uçma arzusunun gerçekleştirilmesi için tarih boyunca birçok bilim insanı çeşitli çalışmalar yapmıştır. Orta Çağ'da Abbas Ibn Firnas, Leonardo Da Vinci, Hazerfen Ahmet Çelebi gibi isimlerden söz edilebilirken, Sanayi Devrimi döneminde George Cayley, Otto Lilienthal, Wright kardeşler gibi bilim insanları önemli rol oynamışlardır. Sanayi Devrimi sonrasında, uçaklar üzerinde temel bilgiler ve metodoloji oluştuğu için çalışmalar hız kazanmıştır. Bu çalışmalar, uçuş hızını artırmak, uçmanın maliyetini düşürmek ve uçakların performansı artırmak gibi hedefler üzerine odaklanmıştır. Günümüzde, mühendisler uçakların çeşitli özelliklerini geliştirmek için optimizasyon, aerodinamik, malzeme ve diğer alanlarda çalışmalar yapmaktadır. Bu süreçte, yapılan çalışmalarda uçak kanatları önemli bir yer tutmaktadır. Bu derleme, uçak kanatlarındaki değişimler ve gelişmeler hakkında Türkçe bir kaynak niteliği taşımakta olup özellikle son yıllarda gerçekleştirilen uçak kanatları ile ilgili makalelere yer verilmiştir . İlk olarak, uçak kanatlarının tarih boyunca geçirdiği değişimlerden bahsedilmekte ve daha sonra günümüzde yapılmakta olan veya gelecekte yapılması beklenen uçak kanadı çalışmaları hakkında bilgi verilmektedir.

A Study of the Change of Aircraft Wings from the Past to the Future

Throughout history, numerous scientists have pursued the realization of the desire for flight through various endeavors. In the Middle Ages, figures such as Abbas Ibn Firnas, Leonardo Da Vinci, and Hazerfen Ahmet Çelebi can be mentioned, while during the Industrial Revolution era, scientists like George Cayley, Otto Lilienthal, and the Wright brothers played significant roles. Following the Industrial Revolution, with the establishment of fundamental knowledge and methodologies concerning aircraft, research in this field gained momentum. These endeavors were centered around objectives such as increasing flight speed, reducing the cost of aviation, and enhancing aircraft performance. In contemporary times, engineers engage in studies across optimization, aerodynamics, materials, and other domains to enhance various aspects of aircraft. In this process, aircraft wings occupy a paramount position, as they are critical components of flight. This compilation serves as a Turkish resource concerning alterations and advancements in aircraft wings, particularly incorporating articles related to aircraft wing innovations in recent years. Initially, a discussion ensues regarding the historical evolution of aircraft wings, followed by an exposition of ongoing and anticipated future aircraft wing research efforts.

___

  • Airbus (2019). The albatross is inspiring tomorrow’s aircraf Wings. https://www.airbus.com/en/newsroom/stories/2019-07-the-albatross-is-inspiring-tomorrows-aircraft-wings#:~:text=The%20albatross%20sea%20bird%20can,albatross%20enjoys%20a%20legendary%20status. , erişim tarihi: 06.03.2023. ,
  • Airbus. (2019). How the albatross is inspiring next generation of aircraft Wings. https://www.airbus.com/en/newsroom/press-releases/2019-06-how-the-albatross-is-inspiring-next-generation-of-aircraft-wings, erişim tarihi: 06.03.2023.
  • Ajaj, R., M., Jankee, G., K. (2018). The Transformer aircraft: A multimission unmanned aerial vehicle capable of symmetric and asymmetric span morphing. Aerospace Science and Technology, 76, 512-522.
  • Anderson, Jr., D. (2016). Uçuşa Başlangıç (Çev. A. Yükselen). Nobel Akademik Yayıncılık, s.1-68, İstanbul.
  • Arsenyeva, A., Duddcek, F. (2015). Efficient and Adaptive Parametric Modeling For Shape Optimization of a Wingbox. Young Investigators Conference 2015, 1-5. Aachen, Almanya.
  • Bachmann, J.i Hidalgo, C., Bricout, S. (2017). Environmental analysis of innovative sustainable composites withpotential use in aviation sector—A life cycle assessment review. Science China Technological Sciences, 60, 9, 1301-1317.
  • Banke, J. (2016). NASA Takes Next Step in Green Aviation X-planes Plans. https://www.nasa.gov/aero/nasa-green-aviation-x-planes, erişim tarihi: 07.03.2023.
  • Bernard, B. (2013). Leonardo Da Vinci’s Human Powered Helicopter Becomes Reality. https://info.natacs.aero/blog/bid/328863/leonardo-da-vinci-s-human-poweredhelicopter-becomes-reality, erişim tarihi: 10.03.2021.
  • Bodell, L. (2023). 3 Years Since The 1st Flight: What's Happening With The Boeing 777X?. https://simpleflying.com/boeing-777x-3-year-update/, erişim tarihi: 06.03.2023.
  • Boeing. (2016). Blended Wing Body Back to the Tunnel. http://www.boeing.com/features/2016/09/blended-wing-body-09-16.page, erişim tarihi: 07.03.2023.
  • Budarapu, P., R., Sudhir, S., Y., B., Natarajan, R. (2016). Design Concepts of an Aircraft Wing: Composite and Morphing Airfoil with Auxetic Structures. Frontiers of Structural and Civil Engineeering, 10, 394-408.
  • Collins, J., M., McLarty, D. (2020). All-Electric Commercial Aviation With Solid Oxide Fuel Cell-Gas Turbine-Battery Hybrids. Applied Energy, 265, 1-9.
  • Constine, J. (2017). Wright Electric unveils its commercial electric plane business. https://techcrunch.com/2017/03/21/wright-electric-planes/, erişim tarihi: 07.03.2022.
  • Council of the European Union. (2008). Proposal for a Directive of the European Parliament and of the Council amending Directive 2003/87/EC so as to include aviation activities in the scheme for greenhouse gas emission allowance trading within the Community - Impact Assessment of the inclusion of aviation activities in the scheme for greenhouse gas emission allowance trading within the Community. 11498/08, 1-58, Brussels.
  • Duchene, E., A. (2020) Flight Without Formulae Simple Discussions on the Mechanics of the Aeroplane. Alpha Editions, pp 1-220.
  • Economon, D., T., Alonso, J., J., Copeland, S., Zeinali, M., Rutherford, D. (2011). Design and Optimization of Future Aircraft for Assessing the Fuel Burn Trends of Commercial Aviation. 49th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition,1-20, Orlando, Florida.
  • European Commission. (2020). Revision of the EU Emission Trading System Directive 2003/87/EC Concerning Aviation. (2020)3515933, 1-7.
  • European Commission. (2021). Reducing emissions from aviation. https://climate.ec.europa.eu/eu-action/transport-emissions/reducing-emissions-aviation_en, erişim tarihi: 26.05.2023.
  • Felder L. J. (2014). NASA N3-X with Turboelectric Distributed Propulsion. NASA Glenn Research Center, 1-18 Cleveland, OH United States.
  • Felder, L., J. (2015). NASA Electric Propulsion System Studies. NASA Glenn Research Center, Cleveland, OH United States.
  • Gill, H., T. (2022). What it’s like inside Boeing’s new 777x. https://edition.cnn.com/travel/article/inside-boeing-new-777x/index.html, erişim tarihi: 06.03.2022.
  • Gipson, L. (2013). Hydrid Wing Body Goes Hybrid. https://www.nasa.gov/content/hybrid-wing-body-goes-hybrid, erişim tarihi: 07.03.2023.
  • Gipson, L. (2018) New NASA X-Plane Construction Begins Now. https://www.nasa.gov/lowboom/new-nasa-x-plane-construction-begins-now, erişim tarihi: 07.03.2022.
  • Harrington, J., D., Williams L. (2015). NASA Successfully Tests Shape-Changing Wing for Next Generation Aviation. https://www.nasa.gov/press-release/nasa-successfully-tests-shape-changing-wing-for-next-generation-aviation, erişim tarihi: 07.03.2023.
  • Hileman, J., I., Spakovszky, Z., S., Drela,. M., Sargeant, M., A., Jones, A. (2010). Airframe Design for Silent Fuel-Efficient Aircraft. Journal of Aircraft, 47, 3, 956-969.
  • Holly, E., Darron, D., Zia, W. (2015). Optimisation of Aircraft Cost Indices to Reduce Fuel Use. Transportation Research Board 94th Annual Meeting, 1-12, Washington DC.
  • Hornung, M., Işıkveren, T., A., Cole, M., Sizmann, A. (2013). Ce-Liner Case Study for eMobility in Air Transportation. Aviation Technology, Integration, and Operations Conference, 1-11, Münih, Almanya.
  • Howard, C., E. (2019). Boeing and NASA unveil lightweight, ultra-thin, more aerodynamic Transonic Truss-Braced Wing concept. https://www.sae.org/news/2019/01/boeing-and-nasa-unveil-lightweight-ultra-thin-more-aerodynamic-transonic-truss-braced-wing-concept, erişim tarihi: 07.03.2023.
  • IATA. (2019). Aircraft Technology Roadmap to 2050. 21-35.
  • IATA. (2019). Technology Roadmap for Environmental Improvement. 1-2.
  • Jemitola, P., O., Fielding, J., P. (2012). Box Wing Aircraft Conceptual Design. 28th International Congress of the Aeronautical Sciences, 1-10.
  • Kaçar, M. (1998). Hezarfen Ahmed Çelebi. Türkiye Diyanet Vakfı İslam Ansiklopedisi, 17,297.
  • Kaya, N., Çiftçi, E., Gürkaş, O., Yudar, S., Aksu, B., M., Ada, M., Erçel, S., F., Karagöz, S., Çetin, T. (2019) “Hava Taşıt Kanatlarında Topoloji ve Boyut Optimizasyonu ile Ağırlık Azaltımı”, TUSAŞ Genç Mühendisler Semineri, 23-25, Ankara, 2019.
  • Kesarwani, S. (2017). Polymer Composites in Aviation Sector A Brief Review Article. International Journal of Engineering Research & Technology, 6, 6, 518-525.
  • Keskin, G., Kuşhan, M. C. (2020). Biyomimetik, Kuşlar ve Planörler. Makina, 164, 11-12.
  • Kılıç, H. (1993). Cevheri İsmail B. Hammad. Türkiye Diyanet Vakfı İslam Ansiklopedisi, 7, 459.
  • Kırbıyık, K. (1988). Abbas B. Firnas. Türkiye Diyanet Vakfı İslam Ansiklopedisi, 1, 24.
  • Koşağız, A. (2018). İlk uçan insan kimdi?. http://www.kokpit.aero/ilk-ucan-insan?writer=25, erişim tarihi: 07.04.2020.
  • Kretov, A., Tiniakov, D. (2022). Evaluation of Mass and Aerıdynamic Efficieny of A High Aspect Ratio Wing for Prospective Passenger Aircraft. Aerospace, 9, 497, 1-17.
  • Kumar, A., R., Blakrishnan, S., R., Balaji, S. (2013). Design of An Aircraft Wing Structure For Static Analysis and Fatigue Life Prediction. International Journal of Engineering Research & Technology, 2, 5, 1154-1158.
  • Kumar K, Sharma N., Raj T. (2015). Applications of Nickel-Titanium Alloy. Journal of Engineering and Technology, 5, 1, 1-7.
  • Kuntawala, N., B., Hicken, J., E., Zingg, D., W. (2011). Preliminary Aerodynamic Shape Optimization of A Blended-Wing Body Aircraft Configuration. 49th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition, 1-15.
  • Kuşhan, C., M., Arslanoğlu, B., Şahin, E. (2019). Yeni Nesil Uçak Kanatları. Makina, 17-18, 156, Eskişehir.
  • Lisitsin, O. (2020). From Ailerons to Flaps: The Main Stages of Design of An Aircraft Wing. https://engre.co/blogs/articles/from-ailerons-to-flaps-the-main-stages-of-design-of-an-aircraft-wing/ , erişim tarihi: 25.07.2023
  • Livne, E., Nelson, C., P. (2012). From Blank Slate to Flight Ready New Small Research UAVs in Twenty Weeks - Undergraduate Airplane Design at the University of Washington. AIAA Aerospace Sciences Meeting, 1-39, Nashville, USA.
  • Loutun, M., J., T., Didane, D., H., Batcha, M., F., M., Abdullah, K. (2021). 2D CFD Simulation Study on Performance of Various NACA Airfoils. CFD Letters, 13, 4, 38-50.
  • Manthey, N. (2020). Wright Electric Works on Large Electric Passenger Plane. https://www.electrive.com/2020/02/02/wright-electric-works-on-large-electric-passenger-plane/, erişim tarihi: 07.03.2023.
  • Minami, Y. (2019). Transition of Space Propulsion and Challenge to the Future -Breakthrough of Propulsion Technology. International Journal of Civil Aviation, 3, 1, 1-31.
  • Mrazova, M. (2013). Advanced Composite Materials of The Future in Aerospace Industry. Incas Bulletin, 5, 3, 140-150.
  • Naveen, R. (2018). Aerodynamic Analysis of C-Wing Aircraft. Incas Bulletin, 10 ,3 157-165.
  • Norris G., Flottau, J. (2023). EASA, Boeing Agree On 777X Certification Criteria. https://aviationweek.com/air-transport/safety-ops-regulation/easa-boeing-agree-777x-certification-criteria, erişim tarihi: 06.03.2023.
  • Nguyen N., Livne, E., Precup, N., Urnes, J., Nelson, C., Ting, E., Lebofsky, S. (2014). Experimental Investigation of a Flexible Wing with a Variable Camber Continuous Trailing Edge Flab Design. 32nd AIAA Applied Aerodynamics Conference, 1-37.
  • Özel, C., Özbek, E. & Ekici, S. (2020). A REVIEW ON APPLICATIONS AND EFFECTS OF MORPHING WING TECHNOLOGY ON UAVS. International Journal of Aviation Science and Technology, 01 (01) , 30-40 .
  • Özgen, S., Seber, G., Şahin, M., Yaman, Y., Bayram, G., Uludağ, Y., Yılmaz, A. (2008). Şekil Değiştiren Uçaklar Havacılıkta Yeni Bir Devrim Yaratabilir Mi?. Savunma ve Havacılık, 1-4,125.
  • Parsifal. (2017). About. https://parsifalproject.eu/ , erişim tarihi: 07.03.2023
  • Parsifal. (2020). PARSIFAL Prandtlplane ARchitecture for the Sustainable Improvement of Future AirpLanes. https://ec.europa.eu/inea/en/horizon-2020/projects/h2020-transport/aviation/parsifal, erişim tarihi: 07.03.2023.
  • Patil, S., P., ve Katkhade, R., P. (2021). Design and analysis of morphing wing mechanism for unmanned aerial vehicle. International Journal of Aerospace System Science and Engineering, 8(2), 65-70.
  • Rinku, A., Ananthasuresh, G., K. (2015). Topology and Size Optimization of Modular Ribs in Aircraft Wings. 11th World Congress on Structural and Multidisciplinary Optimisation, 1-6.
  • Russel J. (2017). Aviation Renaissance: NASA Advances Concepts for Next-gen Aircraft. https://www.nasa.gov/feature/aviation-renaissance-nasa-advances-concepts-for-next-gen-aircraft, erişim tarihi: 07.03.2023.
  • Schuhmacher, G., Murra, I., Wang, L., Laxander, A., O’Leary, O., J., Herold, M. (2002). Multidisciplinary Design Optimization of A Regional Aircraft Wing Box. 9th AIAA/ISSMO Symposium on Multidisciplinary Analysis And Optimization, 1-10.
  • Suresh, C., Ramesh, K., Paramaguru, V. (2015). Aerıdynamic Performance Analysis of A Non-Planar C-Wing Using CFD. Aerospace Science And Technology, 40, 56-61.
  • Uzun, S., İsen, B., Sınmazçelik, T. (2021). Havacılıkta Şekil Değiştirebilir Teknoloji Uygulamaları. İleri Mühendislik Çalışmalar ve Teknolojileri Dergisi, 2, 1, 53-62.
  • Ünlüsoy, L., Körpe, S., D., Şahin, M., Özgen, S., Yaman, Y. (2012). Büyük Oranda Şekil Değiştirebilen Kanatların Aerodinamik Yapısal Tasarımı. 6.Savunma Teknolojileri Kongresi, 1-8.
  • Wood, N. (2017). Strut Braced Wings A challenge or an opportunity?. PADRI Workshop,1-19, Barcelona.
  • Xiaopeng, Z., Haixin, C. (2015). Conceptual Design of Self-Expanding/Folding Extremely Large Aspect Ration Wing Airplane. 7th European Conference For Aeronautics and Space Sciences, 1-11.