Fiyat Düzenlemeli Hizmet Firmalarında Optimum Sermaye ve İşgücü Yatırımı

Fiyatı devletçe veya belediyelerce belirlenmiş ve değişken talebin mutlaka karşılanması gereken şirketlerin optimal yatırım planları Optimal Kontrol tekniği kullanılarak incelenmiştir. Servisin üretim fonksiyonunun bir Cobb-Doulas tipi olduğu varsayılmıştır. Sabit Elastikiyetli İkame tipi üretim foknsiyonu da incelemede kullanılmıştır. Ancak sonuçların mahiyeti değişmemiştir. Üretim faktörlerinin ikisi de (İş gücü ve makina) yarı sabit varsayılmıştır. Talebin değişim oranı, işçilerin işten ayrılma veya emeklilik oranı ve makinaların eskime oranları sonucu belirleyen ana parametrelerdir. Her iki faktöre de yatırımın sıfır olduğu, makinalara yatırımın sıfır olduğu, iş gücüne yatırımın sıfır olduğu zaman dilimlerinin başlangıç ve bitiş zamanları belirlenmiştir. Bu sonuç şirketlerin tamir bakım ve insan kaynakları yönetim planlamasının daha iyi yapılmasına katkıda bulunacaktır.

Optimal Capital and Labor Investment in Price Regulated Service Firms

Optimal investment behavior of a price regulated service firm facing a fluctuating demand curve is studied using Optimal Control Theory. The firm is required to meet the demand at all times. Cobb-Douglas type of demand function is utilized in the analysis where both labor and capital are assumed to be quasi-fixed factors of production. Constant Elasticity of Substitution type of production function is also used in the analysis resulting in similar results. The rates of change of demand, attrition rate of labor, and the depreciation rate of capital are the primary factors determining the optimal behavior. The switching times between periods when investment in both factors is zero, when investment in capital is zero, and when investment in labor is zero are determined allowing better planning of maintenance periods of machinery and vacation planning.

___

  • Abel, A. B. (1981). Dynamic Model of Investment and Capacity Utilization. The Quarterly Journal of Economics, 96(3), 379–403.
  • Akay, G. H. and Dogan, C. (2013). The effect of labor supply changes on output: empirical evidence from US industries. Journal of Productivity Analysis, 39(2), 123–130.
  • Arrow, K. J, Chenery, H. B., Minhas, B. S., and Solow, R. M. (1961). Capital-labor substitution and economic efficiency. The Review of Economics and Statistics, 43, 225–250.
  • Arrow, Kenneth J. (1968). Optimal capital policy with irreversible investment. Value, Capital and Growth, 1–20.
  • Barceló, C. (2007). A Q-model of labour demand. Investigaciones Económicas, 31(1), 43–78.
  • Barro, R. J. and Sala-i-Martin, X. (1995). Economic growth, London-England, The MIT Press.
  • Brown, M. (1967). The Theory and Empirical Analysis of Production, NBER, 3.-13.
  • David, P. A. and van de Klundert, T. (1965). Biased efficiency growth and capital-labor substitution in the US, 1899-1960. American Economic Review, 55, 357–394.
  • Gechert, S., Havránek, T., Havránková, Z., and Kolcunova, D. (2019). Death to the Cobb-Douglas production function (No. 201), IMK working paper.
  • Guyomard, H. (1988). Quasi-fixed factors and production theory: the case of self-employed labour in French agriculture. Irish Journal of Agricultural Economics and Rural Sociology, 13, 21–33.
  • Klump, R. and Preissler, H. (2000). CES production functions and economic growth. Scandinavian Journal of Economics, 102(1), 41–56.
  • Lagomarsino, E. (2020). Estimating elasticities of substitution with nested CES production functions: Where do we stand? Energy Economics, 88, 104752. https://doi.org/10.1016/j.eneco.2020.104752
  • Miller, E. (2008). An assessment of CES and Cobb-Douglas production functions, Washington, DC: Congressional Budget Office.
  • Nerlove, M. (1967). Recent empirical studies of the CES and related production functions. In The Theory and Empirical Analysis of Production, NBER, 55-136.
  • Oi, W. Y. (1962). Labor as a quasi-fixed factor. Journal of Political Economy, 70(6), 538–555.
  • Pitchford, J. D. (1960). Growth and the Elasticity of Substitution. Economic Record, 36, 491–503.
  • Tsurumi, H. (1971). Suboptimization Model of Demand for Investment and Labor: An Optimal Control Theoretic Approach, Kingston, Ont: Institute for Economic Research, Queen's University.