Genom Düzenleme Teknolojileri ve Bitkilerdeki Uygulamaları

İklim değişiklikleri, tarım arazilerinin azalması, biyotik ve abiyotik stres etmenlerinin artması tarım ve gıda üretimi için önemli engeller arasındadır. Üretim ve gıda güvenliğinin, küresel nüfustaki hızlı artış ve öngörülemeyen iklim koşulları karşısında güvence altına alınması için biyotik ve abiyotik streslere daha fazla tolerans gösteren ürünlere ihtiyaç duyulmaktadır. Genom düzenleme teknolojileri, biyotik ve abiyotik stres koşulları altında ürünlerin yüksek verimde üretilmesine yardımcı olma potansiyeline sahiptir. Bu derlemede, genom düzenleme teknolojilerine genel bir bakış sunulacak olup, bitkilerde CRISPR/Cas9 ile yapılan son genom düzenleme uygulamalarına değinilecektir.

Genome Editing Technologies and its Applications in Plants

Climate change, decreasing agricultural fields, increasing biotic and abiotic stress factors are major obstacles for agriculture and food production. In order to secure production and food safety against the rapid increase in global population and unpredictable climatic conditions, products with higher tolerance to biotic and abiotic stresses are needed. Genome editing technologies have the potential to produce high yields of products under biotic and abiotic stress conditions. In this review, an overview of genome editing technologies will be presented, and the recent genome editing applications with CRISPR/Cas9 systems in plants will be mentioned.


  • [1] Stadler, L. J., Mutation in barley induced by X-rays and radium. Science, 68(1756), (1928), 186-187.
  • [2] Kuromori, T., Wada, T., Kamiya, A., Yuguchi, M., Yokouchi, T., Imura, Y., Takabe, H., Sakurai, T., Akiyama, K., Hirayama, T., Okada, K, Shinozaki, K., A trial of phenome analysis using 4000 Ds-insertional mutants in genecoding regions of Arabidopsis. The Plant Journal, 47, (2006), 640-651.
  • [3] Wu, C., Li, X., Yuan, W., Chen, G., Kilian, A., Li, J., Xu, C., Li, X., Zhou, D. X., Wang, S, Zhang, Q., Development of enhancer trap lines for functional analysis of the rice genome. The Plant Journal, 35, (2003), 418-427.
  • [4] Yang Y., Li Y., and Wu C., Genomic resources for functional analyses of the rice genome. Current Opinion in Plant Biology, 16, (2013), 157-63.
  • [5] Herrera-Estrella, L., Depicker, A., Van Montagu, M., and Schell, J. Expression of chimaeric genes transferred into plant cells using a Ti-plasmid-derived vector. Nature, 303(5914), (1983), 209.
  • [6] Bevan, M. W., Flavell, R. B., Chilton, M.D. A chimaeric antibiotic resistance gene as a selectable marker for plant cell transformation.. Nature, 304, (1983), 184-187.
  • [7] Fraley, R. T., Roger, S. G., Horsch, R. B., Sanders P. S., Flick, J. S., Adams, S. P., Bittner, M. L., Brand, L. A., Fink, C. L., Fry, J. S., Galluppi, G. R., Goldberg, S. B., Hoffman, N. L. and Woo, S. C., Expression of bacterial genes in plant cells. Proceedings of the National Academy of Sciences, 80, (1983), 4803- 4807.
  • [8] Vaeck, M., Reynaerts, A., Hofte, H., Jansens, S., De Beuckeleer, M., Dean, C., Zabeau, M., Montagu, M. V., Leemans, J ., Transgenic plants protected from insect attack. Nature, 328, (1987), 33-37.
  • [9] Garg, A. K., Kim, J. K., Owens, T. G., Ranwala, A. P., Do Choi, Y., Kochian, L. V., and Wu, R. J., Trehalose accumulation in rice plants confers high tolerance levels to different abiotic stresses. Proceedings of the National Academy of Sciences, 99(25), (2002), 15898-15903.
  • [10] de las Mercedes Dana, M., Pintor-Toro, J. A., Cubero, B., Transgenic tobacco plants overexpressing chitinases of fungal origin show enhanced resistance to biotic and abiotic stress agents. Plant Physiology, 142(2), (2006), 722-730.
  • [11] Knäblein, J., Plant‐based expression of biopharmaceuticals, Reviews in Cell Biology and Molecular Medicine, (2006).
  • [12] Durai, S., Mani, M., Kandavelou, K., Wu, J., Porteus, M. H., Chandrasegaran, S., Zinc finger nucleases: Custom-designed molecular scissors for genome engineering of plant and mammalian cells. Nucleic Acids Research, 33, (2005), 5978-5990.
  • [13] Puchta, H., The repair of double-strand breaks in plants: mechanisms and consequences for genome evolution. Journal of Experimental Botany, 56, (2005), 1-14.
  • [14] Lin, S., Staahl, B. T., Alla, R. K., and Doudna, J. A., Enhanced homology-directed human genome engineering by controlled timing of CRISPR/Cas9 delivery. Elife, 3, (2014), e04766.
  • [15] Puchta, H., Applying CRISPR/Cas for genome engineering in plants: the best is yet to come. Current Opinion in Plant Biology, 36, (2017), 1-8.
  • [16] Smith, J., Grizot, S., Arnould, S., Duclert, A., Epinat, J. C., Chames, P., Prieto, J., Redondo, P., Blanco, F. J., Bravo, J., Montoya, G., Pâques, F. and Duchateau, P., A combinatorial approach to create artificial homing endonucleases cleaving chosen sequences. Nucleic Acids Research, 34, (2006), e149,5.
  • [17] D’Halluin, K., Vanderstraeten, C., Stals, E., Cornelissen, M., and Ruiter, R.,Homologous recombination: a basis for targeted genome optimization in crop species such as maize. Plant Biotechnology Journal, 6(1), (2008), 93-102.
  • [18] Gao, H., Smith, J., Yang, M., Jones, S., Djukanovic, V., Nicholson, M. G. and Lyznik, L. A. Heritable targeted mutagenesis in maize using a designed endonuclease. The Plant Journal, 61(1), (2010),176-187.
  • [19] Rinaldo, A. R., and Ayliffe, M., Gene targeting and editing in crop plants: a new era of precision opportunities. Molecular Breeding, 35(1), (2015).,40.
  • [20] Lloyd, A., Plaisier, C. L., Carroll, D., and Drews, G. N., Targeted mutagenesis using zinc-finger nucleases in Arabidopsis. Proceedings of the National Academy of Sciences, 102, (2005), 2232-2237.
  • [21] Zhang, F., Maeder, M. L., Unger-Wallace, E., Hoshaw, J. P., Reyon, D., Christian, M., Li, X., Pierick, C. J., Dobbs, D., Peterson, T., Joung, J. K., Voytas, D. F., High frequency targeted mutagenesis in Arabidopsis thaliana using zinc finger nucleases. Proceedings of the National Academy of Sciences, 107, (2010), 12028-12033
  • [22] Zhang, F., Voytas, D. F., Targeted mutagenesis in Arabidopsis using zinc-finger nucleases. In Plant Chromosome Engineering), Humana Press, (pp. 167-177), (2011), Totowa, NJ.
  • [23] Petolino, J. F.,Genome editing in plants via designed zinc finger nucleases. In Vitro Cellular & Developmental Biology – Plant, 51, (2015), 1-8.
  • [24] Kumar, S., AlAbed, D., Worden, A., Novak, S., Wu, H., Ausmus, C., Beck, M., Robinson, H., Minicks, T., Hemingway, D., Lee, R., Skaggs, N., Wang, L., Marri, P., Gupta, M, A modular gene targeting system for sequential transgene stacking in plants. Journal of Biotechnology, 207, (2015),12-20.
  • [25] Samanta, M. K., Dey, A., and Gayen, S., CRISPR/Cas9: an advanced tool for editing plant genomes. Transgenic Research, 25(5), (2016), 561-573.
  • [26] Boch, J., Scholze, H., Schornack, S., Landgraf, A., Hahn, S., Kay, S., Lahaye, T., Nickstadt, A., and Bonas, U., Breaking the code of DNA binding specificity of TAL-type III effectors. Science, 326, (2009), 1509-1512.
  • [27] Sun, N., and Zhao, H., A single-chain TALEN architecture for genome engineering. Molecular BioSystems, 10(3), (2014), 446-453.
  • [28] Cermak, T., Doyle, E. L., Christian, M., Wang, L., Zhang, Y., Schmidt, C., Baller, J. A., Somia, N. V., Bogdanove, A. J. and Voytas, D. F., Efficient design and assembly of custom TALEN and other TAL effectorbased constructs for DNA targeting. Nucleic Acids Research, 39, (2011), 82.
  • [29] Li, T., Liu, B., Spalding, M. H., Weeks, D. P., and Yang, B., High-efficiency TALEN-based gene editing produces disease-resistant rice. Nature Biotechnology, 30, (2012), 390-392.
  • [30] Zhang, Y., Zhang, F., Li, X., Baller, J. A., Qi, Y., Starker, C. G., Bogdanove, A. J., Voytas, D. F., Transcription activator-like effector nucleases enable efficient plant genome engineering. Plant Physiology, 161, (2013), 20-27.
  • [31] Shan, Q, Wang, Y, Chen, K, Liang, Z., Li, J., Zhang, Y., Zhang, K., Liu, J., Voytas, D. F., Zheng, X., Zhang, Y, Gao C., Rapid and efficient gene modification in rice and Brachypodium using TALENs. Molecular Plant, 6, (2013), 1365- 1368.
  • [32] Wendt, T., Holm, P. B., Starker, C. G., et al., TAL effector nucleases induce mutations at a pre-selected location in the genome of primary barley transformants. Plant Molecular Biology, 83 (2013), 279-285.
  • [33] Char, S. N., Unger-Wallace, E., Frame, B., Briggs, S. A., Main, M., Spalding, M. H., Vollbrecht, E., Wang, K., Yang, B., Heritable site-specific mutagenesis using TALENs in maize. Plant Biotechnol Journal, 13, (2015),1002-1010.
  • [34] Ishino, Y., Shinagawa, H., Makino, K., Amemura, M. and Nakata, A., Nucleotide sequence of the iap gene, responsible for alkaline phosphatase isozyme conversion in Escherichia coli, and identification of the gene product. Journal of Bacteriology, 169, (1987), 5429-5433.
  • [35] Nakata, A., Amemura, M., and Makino, K., Unusual nucleotide arrangement with repeated sequences in the Escherichia coli K-12 chromosome. Journal of Bacteriology, 171, (1989), 3553-3556.
  • [36] Hermans, P. W. van Soolingen, D., Bik, E. M., de Haas, P. E., Dale, J. W., van Embden, J. D., Insertion element IS987 from Mycobacterium bovis BCG is located in a hot-spot integration region for insertion elements in Mycobacterium tuberculosis complex strains. Infection and Immunity, 59, (1991), 2695-2705.
  • [37] Mojica, F. J., Ferrer, C., Juez, G. and Rodriguez-Valera, F., Long stretches of short tandem repeats are present in the largest replicons of the Archaea Haloferax mediterranei and Haloferax volcanii and could be involved in replicon partitioning. Molecular Microbiology, 17,(1995), 85-93.
  • [38] Masepohl, B., Gorlitz, K. and Bohme, H., Long tandemly repeated repetitive (LTRR) sequences in the filamentous cyanobacterium Anabaena sp. PCC 7120. Biochim. Biophys. Acta 1307, (1996), 26-30.
  • [39] Hoe, N., Nakashima, K., Grigsby D., Pan, X., Dou, S. J., Naidich, S., Garcia M., Kahn E., Bergmire-Sweat, D, and Musser, J. M., Rapid molecular genetic subtyping of serotype M1 group A Streptococcus strains. Emerging Infectious Diseases journal, 5, (1999), 254-263.
  • [40] Jansen, R., Embden, J. D., Gaastra, W. and Schouls, L. M. Identification of genes that are associated with DNA repeats in prokaryotes. Molecular Microbiology, 43, (2002), 1565-1575.
  • [41] Pourcel, C., Salvignol, G., and Vergnaud, G., CRISPR elements in Yersinia pestis acquire new repeats by preferential uptake of bacteriophage DNA, and provide additional tools for evolutionary studies. Microbiology, 151, (2005), 653- 663.
  • [42] Bolotin, A., Quinquis, B., Sorokin, A., and Ehrlich, S.D., Clustered regularly interspaced short palindrome repeats (CRISPRs) have spacers of extrachromosomal origin. Microbiology, 151, (2005), 2551-2561.
  • [43] Mojica, F.J., Dı´ez-Villasen˜ or, C., Garcı´a-Martı´nez, J., and Soria, E., Intervening sequences of regularly spaced prokaryotic repeats derive from foreign genetic elements. Journal of Molecular Evolution, 60, (2005), 174-182.
  • [44] Amitai, G., and Sorek, R., CRISPR–Cas adaptation: insights into the mechanism of action. Nature Reviews Microbiology 14(2), (2016), 67.
  • [45] McGinn, J., and Marraffini, L. A., Molecular mechanisms of CRISPR–Cas spacer acquisition. Nature Reviews Microbiology, 1, 2018.
  • [46] Ka, D., Jang, D. M., Han, B. W., and Bae, E., Molecular organization of the type II-A CRISPR adaptation module and its interaction with Cas9 via Csn2. Nucleic Acids Research, 46(18),(2018), 9805-9815.
  • [47] Scheben, A., Wolter, F., Batley, J., Puchta, H., and Edwards, D., Towards CRISPR/Cas crops–bringing together genomics and genome editing. New Phytologist, 216(3), (2017), 682-698.
  • [48] Jung, C., Capistrano‐Gossmann, G., Braatz, J., Sashidhar, N., and Melzer, S., Recent developments in genome editing and applications in plant breeding. Plant Breeding, 137(1),(2018), 1-9.
  • [49] Jinek, M., Chylinski, K., Fonfara, I., Hauer, M., Doudna, J. A., and Charpentier, E., A programmable dual-RNA–guided DNA endonuclease in adaptive bacterial immunity. Science, 337,(2012), 816-821.
  • [50] Li, J-F, Norville, J, E., Aach, J.,McCormack, M., Zhang, D., Bush, J., Church, G. M., Sheen, J., Multiplex and homologous recombination-mediated genome editing in Arabidopsis and Nicotiana benthamiana using guide RNA and Cas9. Nature Biotechnology, 31, (2013), 688-691.
  • [51] Nekrasov, V., Staskawicz, B., Weigel, D., Jones, J. D. G., Kamoun, S. Targeted mutagenesis in the model plant Nicotiana benthamiana using Cas9 RNA-guided endonuclease. Nature Biotechnology, 31, (2013), 691-693.
  • [52] Shan Q., Wang, Y., Li, J., Zhang, Y., Cheni K., Liang, Z., Zhang, K., Liu, J., Xi J. J., Qiu, J. L., Gao, C., Targeted genome modification of crop plants using a CRISPR-Cas system. Nature Biotechnology, 31, (2013), 686-688.
  • [53] Jung, C., Capistrano-Gossmann, G., Braatz, J., Sashidhar, N., Melzer, S., Recent developments in genome editing and applications in plant breeding. Plant Breeding, (2017), 1-9.
  • [54] Altpeter, F., Springer, N. M., Bartley, L. E., Blechl, A., Brutnell, T. P., Citovsky, V., Lemaux, P. G., Advancing crop transformation in the era of genome editing. The Plant Cell, (2016), tpc-00196.
  • [55] Ricroch, A., Clairand, P., and Harwood, W., Use of CRISPR systems in plant genome editing: toward new opportunities in agriculture. Emerging Topics in Life Sciences, 1(2), (2017), 169-182.
  • [56] Woo, J. W., Kim, J., Il Kwon, S., Corvalan, C., Cho, S. W., Kim, H., Kim, J. S., DNA-free genome editing in plants with preassembled CRISPR-Cas9 ribonucleoproteins. Nature Biotechnology, 33, (2015), 1162-U156
  • [57] Waltz, E., Gene-edited CRISPR mushroom escapes US regulation. Nature, 532, (2016), 293.
  • [58] Waltz, E., With a free pass, CRISPR-edited plants reach market in record time. Nature Biotechnology, 36, (2018), 6–7
  • [59] Jaganathan, D., Ramasamy, K., Sellamuthu, G., Jayabalan, S., and Venkataraman, G., CRISPR for crop improvement: An update review. Frontiers in plant science, (2018), 9.
  • [60] Scheben, A., and Edwards, D., Bottlenecks for genome-edited crops on the road from lab to farm. Genome biology, 19(1), (2018), 178.


Bibtex @derleme { hafebid523398, journal = {Haliç Üniversitesi Fen Bilimleri Dergisi}, issn = {2618-6241}, address = {Molla Gürani Cad. No:16-18 Fındıkzade}, publisher = {Haliç Üniversitesi}, year = {2019}, volume = {2}, number = {1}, pages = {113 - 133}, title = {Genom Düzenleme Teknolojileri ve Bitkilerdeki Uygulamaları}, key = {cite}, author = {Tufan, Feyza} }
APA Tufan, F. (2019). Genom Düzenleme Teknolojileri ve Bitkilerdeki Uygulamaları . Haliç Üniversitesi Fen Bilimleri Dergisi , 2 (1) , 113-133 .
MLA Tufan, F. "Genom Düzenleme Teknolojileri ve Bitkilerdeki Uygulamaları" . Haliç Üniversitesi Fen Bilimleri Dergisi 2 (2019 ): 113-133 <
Chicago Tufan, F. "Genom Düzenleme Teknolojileri ve Bitkilerdeki Uygulamaları". Haliç Üniversitesi Fen Bilimleri Dergisi 2 (2019 ): 113-133
RIS TY - JOUR T1 - Genom Düzenleme Teknolojileri ve Bitkilerdeki Uygulamaları AU - FeyzaTufan Y1 - 2019 PY - 2019 N1 - DO - T2 - Haliç Üniversitesi Fen Bilimleri Dergisi JF - Journal JO - JOR SP - 113 EP - 133 VL - 2 IS - 1 SN - 2618-6241- M3 - UR - Y2 - 2019 ER -
EndNote %0 Haliç Üniversitesi Fen Bilimleri Dergisi Genom Düzenleme Teknolojileri ve Bitkilerdeki Uygulamaları %A Feyza Tufan %T Genom Düzenleme Teknolojileri ve Bitkilerdeki Uygulamaları %D 2019 %J Haliç Üniversitesi Fen Bilimleri Dergisi %P 2618-6241- %V 2 %N 1 %R %U
ISNAD Tufan, Feyza . "Genom Düzenleme Teknolojileri ve Bitkilerdeki Uygulamaları". Haliç Üniversitesi Fen Bilimleri Dergisi 2 / 1 (Mart 2019): 113-133 .
AMA Tufan F. Genom Düzenleme Teknolojileri ve Bitkilerdeki Uygulamaları. Temel Bilimler Genel. 2019; 2(1): 113-133.
Vancouver Tufan F. Genom Düzenleme Teknolojileri ve Bitkilerdeki Uygulamaları. Haliç Üniversitesi Fen Bilimleri Dergisi. 2019; 2(1): 113-133.
IEEE F. Tufan , "Genom Düzenleme Teknolojileri ve Bitkilerdeki Uygulamaları", , c. 2, sayı. 1, ss. 113-133, Mar. 2019