Characterizations of Lorentzian Para-Sasakian Manifolds with respect to the Schouten-van Kampen Connection
Characterizations of Lorentzian Para-Sasakian Manifolds with respect to the Schouten-van Kampen Connection
The object of the present paper is to study a Lorentzian para-Sasakian manifold with respect to the Schouten-van Kampen connection.
___
- Matsumoto, K. (1989). On Lorentzian paracontact manifolds. Bull. of Yamagata Univ. Nat. Sci., 12(2), 151-156.
- Mihai, I., & Rosca, R. (1992). On Lorentzian P-Sasakian manifolds. Classical Analysis, World Scientific Publish, Singapore,
155-169.
- Matsumoto, K., & Mihai, I. (1988). On a certain transformation in a Lorentzian para-Sasakian manifold. Tensor N. S, 47(2), 189-197.
- Tripathi, M. M., & De, U. C. (2001). Lorentzian almost paracontact manifolds and their submanifolds. J.Korean Soc. Math. Educ. Ser. B: Pure Appl. Math., 8(2), 101-105.
- Ozgur C. (2003). φ -conformally flat Lorentzian para-Sasakian manifolds. Radovi Matematicki, 12(1), 99-106.
- Shaikh A. A., & Baishya K. K. (2006). On φ -symmetric Lorentzian para-Sasakian manifolds. Yokohama Math. Journal, 52, 97-112.
- Taleshian A., & Asghari N. (2010). On LP-Sasakian manifolds satisfying certain conditions on the concircular curvature tensor. Differential Geometry-Dynamical Systems, 12, 228-232.
- Yano K., & Kon M. (1985). Structures on manifolds. Series in Pure Math., Vol 3, World Sci.
- Sato I. (1976). On a structure similar to almost contact structure. Tensor N. S, 30, 219-224.
- Sato I. (1977). On a structure similar to almost contact structure II. Tensor N. S, 31, 199-205.
- Bejancu A., & Faran H. R. (2006). Foliations and geometric structures. Math. and Its Appl., 580, Springer, Dordrecht.
- Solov’ev A. F. (1978). On the curvature of the connection induced on a hyperdistribution in a Riemannian space (in Russian). Geom. Sb., 19, 12-23.
- Solov’ev A. F. (1979). The bending of hyperdistributions (in Russian). Geom. Sb., 20, 101-112.
- Solov’ev A. F. (1982). Second fundamental form of a distribution. Mat. Zametki, 35, 139-146.
- Solov’ev A. F. (1985). Curvature of a distribution. Mat. Zametki, 35, 111-124.