Non-steroidal Antienflamatuar İlaç Olan Naproksen Sodyumun pBR322 Plasmid DNA ile etkileşmesi

Dönüşümlü voltametri CV , differansiyel puls voltametrisi DPV ve UV/Vis spektroskopisi yöntemleri kullanılarak incelendi. Naproksen sodyumun DNA ile etkileşmesi naproksen sodyumun pik akımında belirgin bir azalma ve maksimum absorpsiyon bandında hipokromik etki ve bathokromik kaymaya neden olmuştur. Naproksen sodyumun elektrokimyasal ve spektral özelliklerindeki değişimler; naproksen sodyumun DNA ile interkalasyon bir şekilde etkileştiğini belirtmektedir. Voltametrik ve spektroskopik veriler kullanılarak bağlanma sabitleri tayin edildi. Bu çalışmalar naproksen sodyum – DNA etkileşimini daha iyi anlamak, naproksen sodyumun tedavi edici etkisinin belirlenmesi ve ilerde yeni DNA hedefli ilaçların tasarlanması açısından değerlidir.

Interaction of Nonsteroidal Anti –Inflammatory Drug Naproxen Sodium with DNA by Electrochemical and Spectroscopic Methods

The interaction of NAPS, a nonsteroidal anti – inflammatory drug, with pBR322 plasmid DNA has been investigated by cyclic voltammetry CV , differential pulse voltammetry DPV as well as UV/Vis spectroscopy. The interaction of NAPS with DNA could result a considerable decrease in the NAPS peak currents and a hypochromic effect and bathochromic shift in the maximum adsorption bands of NAPS. The variation in the electrochemical and spectral characteristics of NAPS indicated NAPS bind to DNA by intercalative mode. Binding constants were determined from voltammetric and spectroscopic data with addition of DNA. These studies are valuable for a better understanding the detailed mode of NAPS – DNA interaction, which should be important in deeper insight into the therapeutic efficacy of NAPS and design of new DNA targeted drugs.

___

  • Todd, P. A., Clissold, S. P.: Naproxen - a Reappraisal of Its Pharmacology, and Thera- peutic Use in Rheumatic Diseases and Pain States, Drugs, 40, 91-137 (1990).
  • Boynton, C. S., Dick, C. F., Mayor, G. H.: NSAIDs: an overview, J Clin Pharmacol, 28, 512-517 (1988).
  • Lambert, B., Lepecq, J. B.: ‘’DNA-Ligand Interactions, From Drugs to Proteins’’, New York, (1986).
  • Porschke, D.: ‘’DNA-Ligand Interactions, Specifity and Dynamics of Protein-Nucleic Acid Interactions’’ New York, (1986).
  • Singh, M. P., Joseph, T., Kumar, S., Bathini, Y., Lown, J. W.: Synthesis and Sequence- Specific DNA-Binding of a Topoisomerase Inhibitory Analog of Hoechst-33258 Designed for Altered Base and Sequence Recognition, Chem Res Toxicol , 5, 597-607 (1992).
  • Pasternack, R. F., Gibbs, E. J., Villafranca, J. J.: Interactions of Porphyrins with Nucle- ic-Acids, Biochemistry-Us, 22, 2406-2414 (1983).
  • Castelli, F., De Guidi, G., Giuffrida, S., Miano, P., Sortino, S.: Molecular mechanisms of photosensitization XIII: a combined differential scanning calorimetry and DNA pho- tosensitization study in non steroidal antiinflammatory drugs - DNA interaction, Int J Pharm, 184, 21-33 (1999).
  • Ye, B. F., Zhang, Z. J., Ju, H. X.: Fluorescence study on the interaction between naproxen and yeast DNA, Chinese J Chem, 23, 58-62 (2005).
  • Palecek, E., Kolar, V., Jelen, F., Heinemann, U.: Electrochemical Analysis of the Self- Complementary B-DNA Decamer D(Ccaggcctgg), Bioelectroch Bioener , 23, 285-299 (1990).
  • Chu, X., Shen, G. L., Jiang, J. H., Kang, T. F., Xiong, B., Yu, R. Q.: Voltammetric stud- ies of the interaction of daunomycin anticancer drug with DNA and analytical applica- tions, Anal Chim Acta, 373, 29-38 (1998).
  • Feng, Q., Li, N. Q., Jiang, Y. Y.: Electrochemical studies of porphyrin interacting with DNA and determination of DNA, Anal Chim Acta, 344, 97-104 (1997).
  • Marrazza, G., Chiti, G., Mascini, M., Anichini, M.: Detection of human apolipoprotein E genotypes by DNA electrochemical biosensor coupled with PCR, Clin Chem, 46, 31-37 (2000).
  • Marrazza, G., Chianella, I., Mascini, M.: Disposable DNA electrochemical sensor for hybridization detection, Biosens Bioelectron, 14, 43-51 (1999).
  • Li, N., Ma, Y., Yang, C., Guo, L. P., Yang, X. R.: Interaction of anticancer drug mito- xantrone with DNA analyzed by electrochemical and spectroscopic methods, Biophys Chem, 116, 199-205 (2005)
  • Reichmann, M. E., Rice, S. A., Thomas, C. A., Doty, P.: A Further Examination of the Molecular Weight and Size of Desoxypentose Nucleic Acid, J Am Chem Soc, 76, 3047- 3053 (1954).
  • Kumar, C. V., Asuncion, E. H.: DNA-Binding Studies and Site-Selective Fluorescence Sensitization of an Anthryl Probe, J Am Chem Soc, 115, 8547-8553 (1993).
  • Laviron, E., Roullier, L., Degrand, C.: A Multilayer Model for the Study of Space Distrib- uted Redox Modified Electrodes .2. Theory and Application of Linear Potential Sweep Voltammetry for a Simple Reaction, J Electroanal Chem 112, 11-23 (1980).
  • Wang, S. F., Peng, T. Z., Yang, C. F.: Electrochemical determination of interaction pa- rameters for DNA and mitoxantrone in an irreversible redox process, Biophys Chem, 104, 239-248 (2003).
  • Carter, M. T., Rodriguez, M., Bard, A. J.: Voltammetric Studies of the Interaction of Metal-Chelates with DNA .2. Tris-Chelated Complexes of Cobalt(Iii) and Iron(Ii) with 1,10-Phenanthroline and 2,2’-Bipyridine, J Am Chem Soc, 111, 8901-8911 (1989).
  • Carter, M. T., Bard, A. J.: Voltammetric Studies of the Interaction of Tris(1,10-Phenan- throline)Cobalt(Iii) with DNA, J Am Chem Soc, 109, 7528-7530 (1987).
  • Fukuda, R., Takenaka, S., Takagi, M.: Metal-Ion Assisted DNA-Intercalation of Crown Ether-Linked Acridine-Derivatives, J Chem Soc Chem Comm, 1028-1030 (1990).
  • Takenaka, S., Ihara, T., Takagi, M.: Bis-9-Acridinyl Derivative Containing a Viologen Linker Chain - Electrochemically Active Intercalator for Reversible Labeling of DNA, J Chem Soc Chem Comm, 1485-1487 (1990).
  • Dang, X. J., Nie, M. Y., Tong, J., Li, H. L.: Inclusion of the parent molecules of some drugs with beta-cyclodextrin studied by electrochemical and spectrometric methods, J Electroanal Chem, 448, 61-67 (1998).
  • Dang, X. J., Nie, M. Y., Tong, J., Li, H. L.: Inclusion of 10-methylphenothiazine and its electrochemically generated cation radical by beta-cyclodextrin in water plus methanol solvent mixtures, J Electroanal Chem, 437, 53-59 (1997).