Netrin-1 ve Reseptörlerinin Çeşitli Kanserlerdeki Rolü

ÖZ Netrin-1 laminin benzeri, salgılanan bir proteindir. Sinir sistemi gelişiminde rolü olan netrin-1, hücre göçü, proliferasyon, anjiyogenez, farklılaşma, apopitoz, metastaz, invazyon gibi süreçlerde de yer almaktadır. DCC, neogenin ve UNC5 reseptör ailesi netrin-1’ in ana reseptörlerini oluşturmaktadır. Bu reseptörler netrin-1’in varlığına veya yokluğuna bağlı olarak ikili bir rol oynamaktadır. Netrin-1 karsinogenezde PI3K/AKT, ERK/MAPK, Notch, NF-kB gibi sinyal yolaklarını kullanarak etki etmektedir. Kanser hücresinin canlılığında ve karsinogenez mekanizmasında netrin-1 reseptör etkileşimleri etkili olmaktadır. Genel olarak netrin-1’in aşırı ifadesi ve reseptörlerinin kaybı karsinogenezi teşvik etmektedir. Netrin-1 apopitozda farklı reseptörler aracılığıyla görev almaktadır. DCC ve UNC5H reseptörlerin ifadesinin değişmesi kanser hücre büyümesini ve metastazını etkilemektedir. Çeşitli tümörlerde ileri evrede bağımlı reseptörlerde ekspresyon kaybı gözlenmektedir. Tümörlerde neogenin migrasyon ve metastaz ile ilişkilendirilmektedir. Yapılan araştırmalar netrin-1 ‘in mide kanseri, pankreas duktal adenokarsinomu, kolorektal kanser, glioblastom gibi çeşitli kanserlerde tümör gelişiminde etki gösterdiğini kanıtlamaktadır. Netrin-1’in aşırı ekspresyonu hastalığın kötü prognozu ile ilişkilendirilmektedir ve genel sağ kalım azalmaktadır. Netrin-1 düzeylerinin sağlıklı kontrol grubuna göre hasta grubunda daha yüksek olduğu ve kemoterapi ile ekspresyonun azaldığı bildirilmektedir. Netrin-1 ve reseptörlerinin tümör gelişimindeki mekanizması farklı etkilerinden dolayı net değildir. Bu makalede netrin-1’in çeşitli kanserlerde yerini ve rolünü sunan araştırma bulguları özetlenmiştir.
Anahtar Kelimeler:

Netrin-1, DCC, UNC5, kanser, apopitoz

The Role of Netrin-1 and Its Receptors in Various Cancers

ABSTRACT Netrin-1 is a laminin-like protein that is secreted. It plays a role in the development of the nervous system and is also involved in processes such as cell migration, proliferation, angiogenesis, differentiation, apoptosis, metastasis, and invasion. DCC, neogenin, and UNC5 receptor families form the main receptors of netrin-1. These receptors have a dual role depending on the presence or absence of netrin-1. Netrin-1 influences carcinogenesis through signaling pathways such as PI3K/AKT, ERK/MAPK, Notch, and NF-kB. Netrin-1 receptor interactions are effective in cancer cell viability and carcinogenesis mechanisms. Overall, overexpression of netrin-1 and loss of its receptors promote carcinogenesis. Netrin-1 is involved in apoptosis through different receptors. Changes in the expression of DCC and UNC5H receptors affect cancer cell growth and metastasis. Loss of expression in dependent receptors is observed in advanced stages of various tumors. Neogenin is associated with migration and metastasis in tumors. Studies have shown that netrin-1 influences tumor development in various cancers such as gastric cancer, pancreatic ductal adenocarcinoma, colorectal cancer, and glioblastoma. Overexpression of netrin-1 is associated with poor prognosis and decreased overall survival. Netrin-1 levels are reported to be higher in patient groups compared to healthy control groups and decrease with chemotherapy. The mechanism of netrin-1 and its receptors in tumor development is not clear due to their different effects. This article summarizes research findings presenting the role and position of netrin-1 in various cancers.

___

  • 1. Martins ML, Ferreira SC, Vilela MJ. Multiscale models for the growth of avascular tumors. Physics of Life Reviews. 2007;4(2):128-56. https://doi.org/10.1016/j.plrev.2007.04.002
  • 2. Wang JJ, Lei KF, Han F. Tumor microenvironment: recent advances in various cancer treatments. Eur Rev Med Pharmacol Sci. 2018;22(12):3855-64. https://doi.org/10.26355/ eurrev_201806_15270
  • 3. Joyce JA, Fearon DT. T cell exclusion, immune privilege, and the tumor microenvironment. Science. 2015;348(6230):74-80. https://doi.org/10.1126/science.aaa6204
  • 4. Spill F, Reynolds DS, Kamm RD, Zaman MH. Impact of the physical microenvironment on tumor progression and metastasis. Curr Opin Biotechnol. 2016;40:41-8. https://doi. org/10.1016/j.copbio.2016.02.007
  • 5. Vaghari-Tabari M, Ferns GA, Qujeq D, Andevari AN, Sabahi Z, Moein S. Signaling, metabolism, and cancer: An important relationship for therapeutic intervention. J Cell Physiol. 2021;236(8):5512 - 32. https://doi.org/10.1002/jcp.30276
  • 6. Kontomanolis EN, Koutras A, Syllaios A, Schizas D, Mastoraki A, Garmpis N, et al. Role of oncogenes and tumorsuppressor genes in carcinogenesis: A review. Anticancer Res. 2020;40(11):6009-15. https://doi.org/10.21873/anticanres. 14622
  • 7. Park JH, Pyun WY, Park HW. Cancer metabolism: Phenotype, signaling and therapeutic targets. Cells. 2020;9(10):2308. https://doi.org/10.3390/cells9102308
  • 8. Ishii N, Wadsworth WG, Stern BD, Culotti JG, Hedgecock EM. UNC-6, a laminin-related protein, guides cell and pioneer axon migrations in C. elegans. Neuron. 1992;9(5):873-81. https://doi.org/10.1016/0896-6273(92)90240-e
  • 9. Rajasekharan S, Kennedy TE. The netrin protein family. Genome Biol. 2009;10(9):239. https://doi.org/10.1186/gb-2009- 10-9-239
  • 10. Yamagishi S, Yamada K, Sawada M, Nakano S, Mori N, Sawamoto K, et al. Netrin-5 is highly expressed in neurogenic regions of the adult brain. Front Cell Neurosci. 2015;9:146. https://doi.org/10.3389/fncel.2015.00146
  • 11. Layne K, Ferro A, Passacquale G. Netrin-1 as a novel therapeutic target in cardiovascular disease: to activate or inhibit? Cardiovasc Res. 2015;107(4):410-9. https://doi.org/10.1093/ cvr/cvv201
  • 12. Arakawa H. Netrin-1 and its receptors in tumorigenesis. Nat Rev Cancer. 2004;4(12):978-87. https://doi.org/https://doi. org/10.1038/nrc1504
  • 13. Bruikman CS, Zhang H, Kemper AM, van Gils JM. Netrin family: Role for protein isoforms in cancer. J Nucleic Acids. 2019;2019:3947123. https://doi.org/10.1155/2019/3947123
  • 14. Bradford D, Cole SJ, Cooper HM. Netrin-1: diversity in development. Int J Biochem Cell Biol. 2009;41(3):487-93. https:// doi.org/10.1016/j.biocel.2008.03.014
  • 15. Xia X, Hu Z, Wang S, Yin K. Netrin-1: An emerging player in inflammatory diseases. Cytokine Growth Factor Rev. 2022;64:46-56. https://doi.org/10.1016/j.cytogfr.2022.01.003
  • 16. Moore SW, Tessier-Lavigne M, Kennedy TE. Netrins and their receptors. Adv Exp Med Biol. 2007;621:17-31. https://doi. org/10.1007/978-0-387-76715-4_2
  • 17. Lai Wing Sun K, Correia JP, Kennedy TE. Netrins: versatile extracellular cues with diverse functions. Development. 2011;138(11):2153-69. https://doi.org/10.1242/dev.044529
  • 18. Ly A, Nikolaev A, Suresh G, Zheng Y, Tessier-Lavigne M, Stein E. DSCAM is a netrin receptor that collaborates with DCC in mediating turning responses to netrin-1. Cell. 2008;133(7):1241-54. https://doi.org/10.1016/j. cell.2008.05.030
  • 19. Tu T, Zhang C, Yan H, Luo Y, Kong R, Wen P, et al. CD146 acts as a novel receptor for netrin-1 in promoting angiogenesis and vascular development. Cell Res. 2015;25(3):275-87. https://doi.org/10.1038/cr.2015.15
  • 20. Dun XP, Parkinson DB. Role of netrin-1 signaling in nerve regeneration. Int J Mol Sci. 2017;18(3):491. https://doi. org/10.3390/ijms18030491
  • 21. Bellina M, Bernet A. La nétrine-1, une nouvelle cible antitumorale. médecine/sciences. 2022;38(4):351-8. https://doi. org/10.1051/medsci/2022038
  • 22. Keino-Masu K, Masu M, Hinck L, Leonardo ED, Chan SS, Culotti JG, et al. Deleted in colorectal cancer (DCC) encodes a netrin receptor. Cell. 1996;87(2):175-85. https://doi. org/10.1016/s0092-8674(00)81336-7
  • 23. Kolodziej PA, Timpe LC, Mitchell KJ, Fried SR, Goodman CS, Jan LY, et al. frazzled encodes a Drosophila member of the DCC immunoglobulin subfamily and is required for CNS and motor axon guidance. Cell. 1996;87(2):197-204. https:// doi.org/10.1016/s0092-8674(00)81338-0
  • 24. Hong K, Hinck L, Nishiyama M, Poo MM, Tessier-Lavigne M, Stein E. A ligand-gated association between cytoplasmic domains of UNC5 and DCC family receptors converts netrin-induced growth cone attraction to repulsion. Cell. 1999;97(7):927- 41. https://doi.org/10.1016/s0092-8674(00)80804-1
  • 25. Xu S, Liu Y, Li X, Liu Y, Meijers R, Zhang Y, et al. The binding of DCC-P3 motif and FAK-FAT domain mediates the initial step of netrin-1/DCC signaling for axon attraction. Cell Discov. 2018;4:8. https://doi.org/10.1038/s41421-017-0008-8
  • 26. Xu K, Wu Z, Renier N, Antipenko A, Tzvetkova-Robev D, Xu Y, et al. Neural migration. Structures of netrin-1 bound to two receptors provide insight into its axon guidance mechanism. Science. 2014;344(6189):1275-9. https://doi.org/10.1126/science. 1255149
  • 27. Wang R, Wei Z, Jin H, Wu H, Yu C, Wen W, et al. Autoinhibition of UNC5b revealed by the cytoplasmic domain structure of the receptor. Mol Cell. 2009;33(6):692-703. https://doi. org/10.1016/j.molcel.2009.02.016
  • 28. Geisbrecht BV, Dowd KA, Barfield RW, Longo PA, Leahy DJ. Netrin binds discrete subdomains of DCC and UNC5 and mediates interactions between DCC and heparin. J Biol Chem. 2003;278(35):32561-8. https://doi.org/10.1074/jbc. M302943200
  • 29. Montesinos ML. Roles for DSCAM and DSCAML1 in central nervous system development and disease. Adv Neurobiol. 2014;8:249-70. https://doi.org/10.1007/978-1-4614-8090- 7_11
  • 30. Liu G, Li W, Wang L, Kar A, Guan KL, Rao Y, et al. DSCAM functions as a netrin receptor in commissural axon pathfinding. Proc Natl Acad Sci U S A. 2009;106(8):2951-6. https:// doi.org/10.1073/pnas.0811083106
  • 31. Lemieux M, Thiry L, Laflamme OD, Bretzner F. Role of DSCAM in the development of neural control of movement and locomotion. Int J Mol Sci. 2021;22(16):8511. https://doi. org/10.3390/ijms22168511
  • 32. Lehmann JM, Holzmann B, Breitbart EW, Schmiegelow P, Riethmüller G, Johnson JP. Discrimination between benign and malignant cells of melanocytic lineage by two novel antigens, a glycoprotein with a molecular weight of 113,000 and a protein with a molecular weight of 76,0001. Cancer Res. 1987;47(3):841-5.
  • 33. Borea PA, Gessi S, Merighi S, Vincenzi F, Varani K. Pharmacology of adenosine receptors: The state of the art. Physiol Rev. 2018;98(3):1591-625. https://doi.org/10.1152/ physrev.00049.2017
  • 34. Zhao N, Xia G, Cai J, Li Z, Lv XW. Adenosine receptor A2B mediates alcoholic hepatitis by regulating cAMP levels and the NF-KB pathway. Toxicol Lett. 2022;359:84-95. https://doi. org/10.1016/j.toxlet.2022.01.012
  • 35. Corset V, Nguyen-Ba-Charvet KT, Forcet C, Moyse E, Chédotal A, Mehlen P. Netrin-1-mediated axon outgrowth and cAMP production requires interaction with adenosine A2b receptor. Nature. 2000;407(6805):747-50. https://doi. org/10.1038/35037600
  • 36. McKenna WL, Wong-Staal C, Kim GC, Macias H, Hinck L, Bartoe JL. Netrin-1-independent adenosine A2b receptor activation regulates the response of axons to netrin-1 by controlling cell surface levels of UNC5A receptors. J Neurochem. 2008;104(4):1081-90. https://doi.org/10.1111/j.1471- 4159.2007.05040.x
  • 37. Mehlen P, Tauszig-Delamasure S. Dependence receptors and colorectal cancer. Gut. 2014;63(11):1821-9. https://doi. org/10.1136/gutjnl-2013-306704
  • 38. Boyer NP, Gupton SL. Revisiting netrin-1: One who guides (axons). Front Cell Neurosci. 2018;12:221. https://doi. org/10.3389/fncel.2018.00221
  • 39. Zhu Y, Li Y, Nakagawara A. UNC5 dependence receptor family in human cancer: A controllable double-edged sword. Cancer Lett. 2021;516:28-35. https://doi.org/10.1016/j.canlet. 2021.05.034
  • 40. Mehlen P, Guenebeaud C. Netrin-1 and its dependence receptors as original targets for cancer therapy. Curr Opin Oncol. 2010;22(1):46-54. https://doi.org/10.1097/ CCO.0b013e328333dcd1
  • 41. Arakawa H. p53, apoptosis and axon-guidance molecules. Cell Death Differ. 2005;12(8):1057-65. https://doi.org/10.1038/ sj.cdd.4401601
  • 42. Brisset M, Grandin M, Bernet A, Mehlen P, Hollande F. Dependence receptors: new targets for cancer therapy. EMBO Mol Med. 2021;13(11):e14495. https://doi.org/10.15252/ emmm.202114495
  • 43. Park KW, Crouse D, Lee M, Karnik SK, Sorensen LK, Murphy KJ, et al. The axonal attractant netrin-1 is an angiogenic factor. Proc Natl Acad Sci U S A. 2004;101(46):16210-5. https://doi. org/10.1073/pnas.0405984101
  • 44. Wilson BD, Ii M, Park KW, Suli A, Sorensen LK, Larrieu- Lahargue F, et al. Netrins promote developmental and therapeutic angiogenesis. Science. 2006;313(5787):640-4. https://doi. org/10.1126/science.1124704
  • 45. Zhang X, Cui P, Ding B, Guo Y, Han K, Li J, et al. Netrin-1 elicits metastatic potential of non-small cell lung carcinoma cell by enhancing cell invasion, migration and vasculogenic mimicry via EMT induction. Cancer Gene Ther. 2018;25(1- 2):18-26. https://doi.org/10.1038/s41417-017-0008-8
  • 46. Nguyen A, Cai H. Netrin-1 induces angiogenesis via a DCCdependent ERK1/2-eNOS feed-forward mechanism. Proc Natl Acad Sci U S A. 2006;103(17):6530-5. https://doi.org/10.1073/ pnas.0511011103
  • 47. Castets M, Coissieux MM, Delloye-Bourgeois C, Bernard L, Delcros JG, Bernet A, et al. Inhibition of endothelial cell apoptosis by netrin-1 during angiogenesis. Dev Cell. 2009;16(4):614-20. https://doi.org/10.1016/j.devcel. 2009.02.006
  • 48. Kefeli U, Ucuncu Kefeli A, Cabuk D, Isik U, Sonkaya A, Acikgoz O, et al. Netrin-1 in cancer: Potential biomarker and therapeutic target? Tumour Biol. 2017;39(4):1-7. https://doi. org/10.1177/1010428317698388
  • 49. Lu X, Le Noble F, Yuan L, Jiang Q, De Lafarge B, Sugiyama D, et al. The netrin receptor UNC5B mediates guidance events controlling morphogenesis of the vascular system. Nature. 2004;432(7014):179-86. https://doi.org/10.1038/nature03080
  • 50. Larrivée B, Freitas C, Trombe M, Lv X, Delafarge B, Yuan L, et al. Activation of the UNC5B receptor by netrin-1 inhibits sprouting angiogenesis. Genes Dev. 2007;21(19):2433-47. https://doi.org/10.1101/gad.437807
  • 51. Barallobre MJ, Pascual M, Del Río JA, Soriano E. The netrin family of guidance factors: emphasis on netrin-1 signalling. Brain Res Rev. 2005;49(1):22-47. https://doi.org/10.1016/j. brainresrev.2004.11.003
  • 52. Ming GL, Wong ST, Henley J, Yuan XB, Song HJ, Spitzer NC, et al. Adaptation in the chemotactic guidance of nerve growth cones. Nature. 2002;417(6887):411-8. https://doi.org/10.1038/ nature745
  • 53. Liu G, Beggs H, Jürgensen C, Park HT, Tang H, Gorski J, et al. Netrin requires focal adhesion kinase and Src family kinases for axon outgrowth and attraction. Nat Neurosci. 2004;7(11):1222-32. https://doi.org/10.1038/nn1331
  • 54. Shekarabi M, Kennedy TE. The netrin-1 receptor DCC promotes filopodia formation and cell spreading by activating Cdc42 and Rac1. Mol Cell Neurosci. 2002;19(1):1-17. https://doi. org/10.1006/mcne.2001.1075
  • 55. Li X, Saint-Cyr-Proulx E, Aktories K, Lamarche-Vane N. Rac1 and Cdc42 but not RhoA or Rho kinase activities are required for neurite outgrowth induced by the netrin-1 receptor DCC (deleted in colorectal cancer) in N1E-115 neuroblastoma cells. J Biol Chem. 2002;277(17):15207-14. https://doi.org/10.1074/ jbc.M109913200
  • 56. Ranganathan P, Mohamed R, Jayakumar C, Ramesh G. Guidance cue netrin-1 and the regulation of inflammation in acute and chronic kidney disease. Mediators Inflamm. 2014;2014:525891. https://doi.org/10.1155/2014/525891
  • 57. Ylivinkka I, Keski-Oja J, Hyytiäinen M. Netrin-1: A regulator of cancer cell motility? Eur J Cell Biol. 2016;95(11):513-20. https://doi.org/10.1016/j.ejcb.2016.10.002
  • 58. Mazelin L, Bernet A, Bonod-Bidaud C, Pays L, Arnaud S, Gespach C, et al. Netrin-1 controls colorectal tumorigenesis by regulating apoptosis. Nature. 2004;431(7004):80-4. https:// doi.org/10.1038/nature02788
  • 59. Delloye-Bourgeois C, Fitamant J, Paradisi A, Cappellen D, Douc-Rasy S, Raquin M-A, et al. Netrin-1 acts as a survival factor for aggressive neuroblastoma. J Exp Med. 2009;206(4):833-47. https://doi.org/10.1084/jem.20082299
  • 60. Fitamant J, Guenebeaud C, Coissieux M-M, Guix C, Treilleux I, Scoazec J-Y, et al. Netrin-1 expression confers a selective advantage for tumor cell survival in metastatic breast cancer. Proc Natl Acad Sci U S A. 2008;105(12):4850-5. https://doi. org/doi:10.1073/pnas.0709810105
  • 61. Delloye-Bourgeois C, Brambilla E, Coissieux MM, Guenebeaud C, Pedeux R, Firlej V, et al. Interference with netrin-1 and tumor cell death in non-small cell lung cancer. J Natl Cancer Inst. 2009;101(4):237-47. https://doi.org/10.1093/jnci/djn491
  • 62. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J Clin. 2021;71(3):209-49. https://doi.org/10.3322/caac.21660
  • 63. Castets M, Broutier L, Molin Y, Brevet M, Chazot G, Gadot N, et al. DCC constrains tumour progression via its dependence receptor activity. Nature. 2011;482(7386):534-7. https://doi. org/10.1038/nature10708
  • 64. Ko SY, Blatch GL, Dass CR. Netrin-1 as a potential target for metastatic cancer: focus on colorectal cancer. Cancer Metastasis Rev. 2014;33(1):101-13. https://doi.org/10.1007/s10555- 013-9459-z
  • 65. Shin SK, Nagasaka T, Jung BH, Matsubara N, Kim WH, Carethers JM, et al. Epigenetic and genetic alterations in netrin-1 receptors UNC5C and DCC in human colon cancer. Gastroenterology. 2007;133(6):1849-57. https://doi.org/10.1053/j. gastro.2007.08.074
  • 66. Paradisi A, Maisse C, Coissieux M-M, Gadot N, Lépinasse F, Delloye-Bourgeois C, et al. Netrin-1 up-regulation in inflammatory bowel diseases is required for colorectal cancer progression. Proc Natl Acad Sci U S A. 2009;106(40):17146-51. https://doi.org/10.1073/pnas.0901767106
  • 67. Paradisi A, Maisse C, Bernet A, Coissieux MM, Maccarrone M, Scoazec JY, et al. NF-kappaB regulates netrin-1 expression and affects the conditional tumor suppressive activity of the netrin-1 receptors. Gastroenterology. 2008;135(4):1248-57. https://doi.org/10.1053/j.gastro.2008.06.080
  • 68. Rodrigues S, De Wever O, Bruyneel E, Rooney RJ, Gespach C. Opposing roles of netrin-1 and the dependence receptor DCC in cancer cell invasion, tumor growth and metastasis. Oncogene. 2007;26(38):5615-25. https://doi.org/10.1038/ sj.onc.1210347
  • 69. Li B, Shen K, Zhang J, Jiang Y, Yang T, Sun X, et al. Serum netrin-1 as a biomarker for colorectal cancer detection. Cancer Biomark. 2020;28(3):391-6. https://doi.org/10.3233/cbm- 190340
  • 70. Okazaki S, Ishikawa T, Iida S, Ishiguro M, Kobayashi H, Higuchi T, et al. Clinical significance of UNC5B expression in colorectal cancer. Int J Oncol. 2012;40(1):209-16. https://doi. org/10.3892/ijo.2011.1201
  • 71. Kefeli U, Yildirim ME, Aydin D, Madenci OC, Yasar N, Sener N, et al. Netrin-1 concentrations in patients with advanced gastric cancer and its relation with treatment. Biomarkers. 2012;17(7):663-7. https://doi.org/10.3109/135475 0x.2012.709882
  • 72. Yin K, Wang L, Zhang X, He Z, Xia Y, Xu J, et al. Netrin-1 promotes gastric cancer cell proliferation and invasion via the receptor neogenin through PI3K/AKT signaling pathway. Oncotarget. 2017;8(31):51177-89. https://doi.org/10.18632/ oncotarget.17750
  • 73. Yin K, Shang M, Dang S, Wang L, Xia Y, Cui L, et al. Netrin‑1 induces the proliferation of gastric cancer cells via the ERK/ MAPK signaling pathway and FAK activation. Oncol Rep. 2018;40(4):2325-33. https://doi.org/10.3892/or.2018.6614
  • 74. Hibi K, Sakata M, Sakuraba K, Kitamura YH, Shirahata A, Goto T, et al. Changes in UNC5C gene methylation during human gastric carcinogenesis. Anticancer Res. 2009;29(11):4397-9.
  • 75. Hibi K, Sakata M, Sakuraba K, Kitamura YH, Shirahata A, Goto T, et al. Methylation of the DCC gene is lost in advanced gastric cancer. Anticancer Res. 2010;30(1):107-9.
  • 76. Yin K, Dang S, Cui L, Fan X, Wang L, Xie R, et al. Netrin-1 promotes metastasis of gastric cancer by regulating YAP activity. Biochem Biophys Res Commun. 2018;496(1):76-82. https://doi.org/10.1016/j.bbrc.2017.12.170
  • 77. Yin K, Wang L, Xia Y, Dang S, Zhang X, He Z, et al. Netrin- 1 promotes cell neural invasion in gastric cancer via its receptor neogenin. J Cancer. 2019;10(14):3197-207. https:// doi.org/10.7150/jca.30230
  • 78. Qu H, Sun H, Wang X. Neogenin-1 Promotes Cell Proliferation, Motility, and Adhesion by Up-Regulation of Zinc Finger E-Box Binding Homeobox 1 Via Activating the Rac1/PI3K/ AKT Pathway in Gastric Cancer Cells. Cell Physiol Biochem. 2018;48(4):1457-67. https://doi.org/10.1159/000492255
  • 79. Hidalgo M. Pancreatic cancer. N Engl J Med. 2010;362(17):1605-17. https://doi.org/10.1056/NEJMra0901557
  • 80. Link BC, Reichelt U, Schreiber M, Kaifi JT, Wachowiak R, Bogoevski D, et al. Prognostic implications of netrin-1 expression and its receptors in patients with adenocarcinoma of the pancreas. Ann Surg Oncol. 2007;14(9):2591-9. https://doi. org/10.1245/s10434-007-9469-6
  • 81. Dumartin L, Quemener C, Laklai H, Herbert J, Bicknell R, Bousquet C, et al. Netrin-1 mediates early events in pancreatic adenocarcinoma progression, acting on tumor and endothelial cells. Gastroenterology. 2010;138(4):1595-606. https://doi. org/10.1053/j.gastro.2009.12.061
  • 82. Ramesh G, Berg A, Jayakumar C. Plasma netrin-1 is a diagnostic biomarker of human cancers. Biomarkers. 2011;16(2):172- 80. https://doi.org/10.3109/1354750x.2010.541564
  • 83. Huang Q, Hua HW, Jiang F, Liu DH, Ding G. Netrin-1 promoted pancreatic cancer cell proliferation by upregulation of Mdm2. Tumour Biol. 2014;35(10):9927-34. https://doi. org/10.1007/s13277-014-2195-3
  • 84. Wang L, Zhi X, Zhu Y, Zhang Q, Wang W, Li Z, et al. MUC4- promoted neural invasion is mediated by the axon guidance factor netrin-1 in PDAC. Oncotarget. 2015;6(32):33805-22. https://doi.org/10.18632/oncotarget.5668
  • 85. An XZ, Zhao ZG, Luo YX, Zhang R, Tang XQ, Hao D, et al. Netrin-1 suppresses the MEK/ERK pathway and ITGB4 in pancreatic cancer. Oncotarget. 2016;7(17):24719-33. https:// doi.org/10.18632/oncotarget.8348
  • 86. Vásquez X, Sánchez-Gómez P, Palma V. Netrin-1 in glioblastoma neovascularization: The new partner in crime? Int J Mol Sci. 2021;22(15):8248. https://doi.org/10.3390/ijms22158248
  • 87. Ylivinkka I, Hu Y, Chen P, Rantanen V, Hautaniemi S, Nyman TA, et al. Netrin-1-induced activation of Notch signaling mediates glioblastoma cell invasion. J Cell Sci. 2013;126(11):2459- 69. https://doi.org/10.1242/jcs.120022
  • 88. Shimizu A, Nakayama H, Wang P, König C, Akino T, Sandlund J, et al. Netrin-1 promotes glioblastoma cell invasiveness and angiogenesis by multiple pathways including activation of RhoA, cathepsin B, and cAMP-response element-binding protein. J Biol Chem. 2013;288(4):2210-22. https://doi. org/10.1074/jbc.M112.397398
  • 89. Sanvoranart T, Supokawej A, Kheolamai P, Y UP, Poungvarin N, Sathornsumetee S, et al. Targeting netrin-1 in glioblastoma stem-like cells inhibits growth, invasion, and angiogenesis. Tumour Biol. 2016;37(11):14949-60. https://doi.org/10.1007/ s13277-016-5314-5
  • 90. Ylivinkka I, Sihto H, Tynninen O, Hu Y, Laakso A, Kivisaari R, et al. Motility of glioblastoma cells is driven by netrin-1 induced gain of stemness. J Exp Clin Cancer Res. 2017;36(9). https://doi.org/10.1186/s13046-016-0482-0
  • 91. Chen J-Y, He X-X, Ma C, Wu X-M, Wan X-L, Xing Z-K, et al. Netrin-1 promotes glioma growth by activating NF-κB via UNC5A. Sci Rep. 2017;7:5454. https://doi.org/10.1038/ s41598-017-05707-0
  • 92. Lin L, Miao L, Lin H, Cheng J, Li M, Zhuo Z, et al. Targeting RAS in neuroblastoma: Is it possible? Pharmacol Ther. 2022;236:108054. https://doi.org/10.1016/j.pharmthera. 2021.108054
  • 93. Picard M, Petrie RJ, Antoine-Bertrand J, Saint-Cyr-Proulx E, Villemure JF, Lamarche-Vane N. Spatial and temporal activation of the small GTPases RhoA and Rac1 by the netrin-1 receptor UNC5a during neurite outgrowth. Cell Signal. 2009;21(12):1961-73. https://doi.org/10.1016/j.cellsig. 2009.09.004
  • 94. Zhu Y, Li Y, Haraguchi S, Yu M, Ohira M, Ozaki T, et al. Dependence receptor UNC5D mediates nerve growth factor depletion-induced neuroblastoma regression. J Clin Invest. 2013;123(7):2935-47. https://doi.org/10.1172/jci65988
  • 95. Wang H, Zhang B, Gu M, Li S, Chi Z, Hao L. Overexpression of the dependence receptor UNC5H4 inhibits cell migration and invasion, and triggers apoptosis in neuroblastoma cell. Tumour Biol. 2014;35(6):5417-25. https://doi.org/10.1007/ s13277-014-1706-6
  • 96. Villanueva AA, Falcón P, Espinoza N, R LS, Milla LA, Hernandez- SanMiguel E, et al. The Netrin-4/ Neogenin-1 axis promotes neuroblastoma cell survival and migration. Oncotarget. 2017;8(6):9767-82. https://doi.org/10.18632/oncotarget. 14213
  • 97. Villanueva AA, Sanchez-Gomez P, Muñoz-Palma E, Puvogel S, Casas BS, Arriagada C, et al. The Netrin-1-Neogenin-1 signaling axis controls neuroblastoma cell migration via integrin-β1 and focal adhesion kinase activation. Cell Adh Migr. 2021;15(1):58-73. https://doi.org/10.1080/19336918.20 21.1892397
  • 98. Grandin M, Mathot P, Devailly G, Bidet Y, Ghantous A, Favrot C, et al. Inhibition of DNA methylation promotes breast tumor sensitivity to netrin-1 interference. EMBO Mol Med. 2016;8(8):863-77. https://doi.org/10.15252/ emmm.201505945
  • 99. Padua MB, Bhat-Nakshatri P, Anjanappa M, Prasad MS, Hao Y, Rao X, et al. Dependence receptor UNC5A restricts luminal to basal breast cancer plasticity and metastasis. Breast Cancer Res. 2018;20:35. https://doi.org/10.1186/s13058-018-0963-5
  • 100. Yuan M, Xie F, Xia X, Zhong K, Lian L, Zhang S, et al. UNC5C‑knockdown enhances the growth and metastasis of breast cancer cells by potentiating the integrin α6/β4 signaling pathway. Int J Oncol. 2020;56(1):139-50. https://doi. org/10.3892/ijo.2019.4931
  • 101. Zhai X, Zhang J, Tian Y, Li J, Jing W, Guo H, et al. The mechanism and risk factors for immune checkpoint inhibitor pneumonitis in non-small cell lung cancer patients. Cancer Biol Med. 2020;17(3):599-611. https://doi.org/10.20892/j. issn.2095-3941.2020.0102
  • 102. Yıldırım ME, Kefeli U, Aydın D, Sener N, Gümüş M. The value of plasma netrin-1 in non-small cell lung cancer patients as diagnostic and prognostic biomarker. Tumour Biol. 2016;37(9):11903-7. https://doi.org/10.1007/s13277-016- 5025-y
  • 103. Jin X, Luan H, Chai H, Yan L, Zhang J, Wang Q, et al. Netrin‑1 interference potentiates epithelial‑to‑mesenchymal transition through the PI3K/AKT pathway under the hypoxic microenvironment conditions of non‑small cell lung cancer. Int J Oncol. 2019;54(4):1457-65. https://doi.org/10.3892/ijo.2019.4716
  • 104. Akino T, Han X, Nakayama H, McNeish B, Zurakowski D, Mammoto A, et al. Netrin-1 promotes medulloblastoma cell invasiveness and angiogenesis, and demonstrates elevated expression in tumor tissue and urine of patients with pediatric medulloblastoma. Cancer Res. 2014;74(14):3716-26. https:// doi.org/https://doi.org/10.1158/0008-5472.CAN-13-3116
  • 105. Kaufmann S, Kuphal S, Schubert T, Bosserhoff AK. Functional implication of netrin expression in malignant melanoma. Cell Oncol. 2009;31(6):415-22. https://doi.org/10.3233/clo- 2009-0491
  • 106. Kong CZ, Liu J, Liu L, Zhang Z, Guo KF. Interactional expression of netrin-1 and its dependence receptor UNC5B in prostate carcinoma. Tumour Biol. 2013;34(5):2765-72. https://doi.org/10.1007/s13277-013-0834-8
  • 107. Papanastasiou AD, Pampalakis G, Katsaros D, Sotiropoulou G. Netrin-1 overexpression is predictive of ovarian malignancies. Oncotarget. 2011;2(5):363-7. https://doi.org/10.18632/ oncotarget.258
  • 108. Yan W, Han P, Zhou Z, Tu W, Liao J, Li P, et al. Netrin-1 induces epithelial-mesenchymal transition and promotes hepatocellular carcinoma invasiveness. Dig Dis Sci. 2014;59(6):1213- 21. https://doi.org/10.1007/s10620-013-3016-z
  • 109. Han P, Fu Y, Liu J, Wang Y, He J, Gong J, et al. Netrin-1 promotes cell migration and invasion by down-regulation of BVES expression in human hepatocellular carcinoma. Am J Cancer Res. 2015;5(4):1396-409.