Kozmetiklerde Kullanılan Biyoteknolojik Etkin ve Yardımcı Maddeler

Kozmetikler, kişisel bakım endüstrisinin en hızlı büyüyen segmentlerinden biri olup, yaşlanma karşıtı, hiperpigmentasyon karşıtı, nemlendirici, güneşten koruyucu ürünler ve parfümler dahil olmak üzere, cilt, vücut ve saç için geniş kullanım alanları olan preparatları içine almaktadır. Biyoteknolojinin, kozmetik formülasyonlardaki rolü giderek artan oranda devam etmektedir. Son yıllardaki biyoteknolojik gelişmeler, kozmetik formülasyonlarda önemli rol oynayan bir dizi ham maddenin üretilmesi için daha etkili ve verimli yöntemler geliştirilmesine yardımcı olmuştur. Rekombinant proteinler, büyüme faktörleri ve sitokinler bir ilaç geliştirme stratejisinin bileşenleri gibi görünse de her biri biyoteknoloji şirketleri tarafından toplumun genç ve güzel görünme arzusunu yerine getirmek için yatırım yapılan bir yaklaşımı temsil etmektedir. Bu derlemede; biyoteknolojik yöntemlerle üretilmiş, kozmetik kullanıma uygun çeşitli fonksiyonlara sahip etkin maddelerin yer aldığı ticari preparatlar formülasyon tasarımlarıyla ve kullanım amaçlarıyla beraber sunulmuş olup, makalenin bu alanda bir rehber oluşturması hedeflenmiştir.

Biotechnological Active Ingredients and Excipients Used in Cosmetics

Cosmetics are one of the fastest growing segments of the personal care industry and include anti-aging, anti-hyperpigmentation, moisturizing, sunscreen and perfume products for skin, body and hair. The role of biotechnology in cosmetic formulations continues increasingly. Biotechnological advances in recent years has helped to develop more efficient methods for the production of a number of raw materials that play an important role in cosmetic formulations. Although recombinant proteins, growth factors, and cytokines may appear to be components of a drug development strategy, they all represent an approach that has been invested by biotechnology companies to fulfill the young and beautiful desire of society. The aim of this project is to create a guide by presenting the commercial preparations containing active substances, which are produced by biotechnological methods, with their various functions suitable for cosmetic purposes, formulation designs and intended uses.

___

  • 1. Schürch C BP, Zülli F: Potential of plant cells in culture for cosmetic application. Phytochem Rev 2008, 7:599–605.
  • 2. Pitman S. How biotechnology has impacted the cosmetics business in 2016 2016 [Available from: https://www.cosmeticsdesign.com/Article/2016/12/12/How-biotechnology-has-impacted-the-cosmetics-business-in-2016.
  • 3. FDA. Cosmeceutical 2017 [Available from: https://www.fda.gov/Cosmetics/Labeling/Claims/ucm127064.htm.
  • 4. Mukul S SK, Atul, N.: Cosmeceuticals For The Skin: An Overview. Asian J Pharm Clin Res 2011, 4(2):1-6.
  • 5. Griffiths TW: Cosmeceuticals: coming of age. Br J Dermatol 2010, 162(3):469-70.
  • 6. Rinaldi A: Healing beauty? More biotechnology cosmetic products that claim drug-like properties reach the market. EMBO reports 2008, 9(11):1073-7.
  • 7. Lohani A, Verma A, Joshi H, Yadav N, Karki N: Nanotechnology-based cosmeceuticals. ISRN Dermatol 2014, 2014:843687.
  • 8. Hekimoglu S: Yaşlanma Karşıtı Kozmetik Ürünlerdeki Yenilikler. Turkiye Klinikleri J Cosm Dermatol-Special Topics 2017, 10(1):1-7.
  • 9. Muñoz R G-FC. Microalgae-Based Biofuels and Bioproducts: From Feedstock Cultivation to End-Products: Woodhead Publishing; 2017. 1-540 p.
  • 10. McDaniel DH DJ, Lewis J. . The Role of Cosmeceuticals in Dermatology. In: Draelos ZD TL, editor. Cosmetic Formulations of Skin Care Products. Florida, ABD: CRC Press; 2005.
  • 11. Zappelli C BA, Apone F, Colucci G.: Effective Active Ingredients Obtained through Biotechnology. Cosmetics 2016, 3(39):1-7.
  • 12. Draelos ZD: The art and science of new advances in cosmeceuticals. Clin Plast Surg 2011, 38(3):397-407, vi.
  • 13. Kim SK, Ravichandran YD, Khan SB, Kim YT: Prospective of the Cosmeceuticals Derived from Marine Organisms. Biotechnol Bioproc E 2008, 13(5):511-23.
  • 14. Wanjari N WJ: A Review on Latest Trend of Cosmetics-Cosmeceuticals International Journal of Pharma Research & Review 2015, 4(5):45-51.
  • 15. Leuchtenberger W, Huthmacher K, Drauz K: Biotechnological production of amino acids and derivatives: current status and prospects. Appl Microbiol Biotechnol 2005, 69(1):1-8.
  • 16. Lupo M. Peptites for Facial Skin Aging. In: Shiffman MA MS, Lam SM, editor. Simplified Facial Rejuvenation: Springer Science & Business Media; 2008.
  • 17. Ivanov K, Stoimenova A, Obreshkova D, Saso L: Biotechnology in the Production of Pharmaceutical Industry Ingredients: Amino Acids. Biotechnol Biotec Eq 2013, 27(2):3620-6.
  • 18. Lima TN MC: Bioactive Peptites: Applications and Relevance for Cosmeceuticals. Cosmetics 2018, 5(21):1-9.
  • 19. Suter F, Schmid D, Wandrey F, Zulli F: Heptapeptide-loaded solid lipid nanoparticles for cosmetic anti-aging applications. European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik eV 2016, 108:304-9.
  • 20. Simeon A, Emonard H, Hornebeck W, Maquart FX: The tripeptide-copper complex glycyl-L-histidyl-L-lysine-Cu2+ stimulates matrix metalloproteinase-2 expression by fibroblast cultures. Life Sci 2000, 67(18):2257-65.
  • 21. Finkley M AY, Bhandarkar S. . Copper peptite and skin. In: Elsner P MH, editor. In Cosmeceuticals and Active Cosmetics: Drugs vs Cosmetics New York: Marcel Dekker Press; 2005.
  • 22. PK. G: Neuropeptites in the skin. An Bras Dermatol 2003, 78:483–98.
  • 23. Pai VV BP, Shukla P. : Topical peptites as cosmeceuticals. Indian J Dermatol Venereol Leprol 2017, 83:9–18.
  • 24. Sarmidi MR EH: Biotechnology for Wellness Industry: Concepts and Biofactories. . 2012;1:3-28. International Journal of Biotechnology for Wellness Industries 2012, 1:3-28.
  • 25. Yapar EA TS: Yaşlanma Karşıtı Kozmetik Yaklaşımlar Ve Ürün Bileşenleri. Balikesir Saglik Bil Derg 2016, 5(2):99-109.
  • 26. Gurung N, Ray S, Bose S, Rai V: A Broader View: Microbial Enzymes and Their Relevance in Industries, Medicine, and Beyond. BioMed research international 2013.
  • 27. Teena Momsia PM: A Review On Microbial Lipase-Versatile Tool For Industrial Applications. Int J Lifesc Bt & Pharm Res 2013, 2(4):1-16.
  • 28. Antonopoulou I, Varriale S, Topakas E, Rova U, Christakopoulos P, Faraco V: Enzymatic synthesis of bioactive compounds with high potential for cosmeceutical application. Appl Microbiol Biotechnol 2016, 100(15):6519-43.
  • 29. Chong BF, Blank LM, McLaughlin R, Nielsen LK: Microbial hyaluronic acid production. Appl Microbiol Biotechnol 2005, 66(4):341-51.
  • 30. Landau M, Fagien S: Science of Hyaluronic Acid Beyond Filling: Fibroblasts and Their Response to the Extracellular Matrix. Plast Reconstr Surg 2015, 136(5 Suppl):188S-95S.
  • 31. CODIF. PHYCOSACCHARIDE AC: CODIF Technologie Naturelle; [Available from: http://www.codif-tn.com/en/principesactifs/phycosaccharide-ac/.
  • 32. Rodrigues LR: Microbial surfactants: fundamentals and applicability in the formulation of nano-sized drug delivery vectors. Journal of colloid and interface science 2015, 449:304-16.
  • 33. Marchant R, Banat IM: Biosurfactants: a sustainable replacement for chemical surfactants? Biotechnology letters 2012, 34(9):1597-605.
  • 34. Ben Belgacem Z, Bijttebier S, Verreth C, Voorspoels S, Van de Voorde I, Aerts G, et al.: Biosurfactant production by Pseudomonas strains isolated from floral nectar. J Appl Microbiol 2015, 118(6):1370-84.
  • 35. De Rienzo MAD, Banat IM, Dolman B, Winterburn J, Martin PJ: Sophorolipid biosurfactants: Possible uses as antibacterial and antibiofilm agent. New Biotechnol 2015, 32(6):720-6.
  • 36. Kundu D, Hazra C, Dandi N, Chaudhari A: Biodegradation of 4-nitrotoluene with biosurfactant production by Rhodococcus pyridinivorans NT2: metabolic pathway, cell surface properties and toxicological characterization. Biodegradation 2013, 24(6):775-93.
  • 37. Kiran GS, Ninawe AS, Lipton AN, Pandian V, Selvin J: Rhamnolipid biosurfactants: evolutionary implications, applications and future prospects from untapped marine resource. Crit Rev Biotechnol 2016, 36(3):399-415.
  • 38. Gudina EJ, Rangarajan V, Sen R, Rodrigues LR: Potential therapeutic applications of biosurfactants. Trends Pharmacol Sci 2013, 34(12):667-75.
  • 39. Joe MM, Bradeeba K, Parthasarathi R, Sivakumaar PK, Chauhan PS, Tipayno S, et al.: Development of surfactin based nanoemulsion formulation from selected cooking oils: Evaluation for antimicrobial activity against selected food associated microorganisms. J Taiwan Inst Chem E 2012, 43(2):172-80.
  • 40. Vecino X CJ, Moldes AB, Rodrigues LR.: Critical reviews in biotechnology biosurfactants in cosmetic formulations: trends and challenges. Crit Rev Biotechnol 2017, 37:911–23.
  • 41. Lukic M, Pantelic I, Savic S: An Overview of Novel Surfactants for Formulation of Cosmetics with Certain Emphasis on Acidic Active Substances. Tenside Surfact Det 2016, 53(1):7-19.
  • 42. Miyamoto KT, Komatsu M, Ikeda H: Discovery of Gene Cluster for Mycosporine-Like Amino Acid Biosynthesis from Actinomycetales Microorganisms and Production of a Novel Mycosporine-Like Amino Acid by Heterologous Expression. Appl Environ Microb 2014, 80(16):5028-36.
  • 43. Rincon-Fontan M, Rodriguez-Lopez L, Vecino X, Cruz JM, Moldes AB: Adsorption of natural surface active compounds obtained from corn on human hair. Rsc Adv 2016, 6(67):63064-70.
  • 44. Raquel Diniz Rufino JMdL, Leonie Asfora Sarubbo, Lígia Raquel Marona Rodrigues, José Antônio C. Teixeira, Galba Maria de Campos-Takaki. Antimicrobial and antiadhesive potential of a biosurfactants produced by Candida Species. . Practical Applications in Biomedical Engineering2013. p. 245–56.
  • 45. Bezerra KGO, Rufino RD, Luna JM, Sarubbo LA: Saponins and microbial biosurfactants: Potential raw materials for the formulation of cosmetics. Biotechnology progress 2018, 34(6):1482-93.
  • 46. Jeandet P, Delaunois B, Aziz A, Donnez D, Vasserot Y, Cordelier S, et al.: Metabolic Engineering of Yeast and Plants for the Production of the Biologically Active Hydroxystilbene, Resveratrol. Journal of Biomedicine and Biotechnology 2012.
  • 47. Yadav D. Tanveer A MN, Yadav S. Overview and Principles of Bioengineering: The Drivers of Omics Technologies. In: Barh D AV, editor. Omics Technologies and Bio-Engineering: Academic Press; 2017.
  • 48. Lequeux C, Lhoste A, Rovere MR, Montastier C, Damour O: Model of in vitro Healing to Test the Influence of Dedifferentiated Crithmum maritimum Cells on Dermal Repair and Epidermal Regeneration. Skin Pharmacol Phys 2011, 24(2):75-80.
  • 49. Caucanas M, Montastier C, Pierard GE, Quatresooz P: Dynamics of skin barrier repair following preconditioning by a biotechnology-driven extract from samphire (Crithmum maritimum) stem cells. J Cosmet Dermatol-Us 2011, 10(4):288-93.
  • 50. Gerlach N, Mentel M, Kohler T, Tuchscherer B, Garbe B, Ulker J, et al.: Effect of the multifunctional cosmetic ingredient sphinganine on hair loss in males and females with diffuse hair reduction. Clin Cosmet Investig Dermatol 2016, 9:191-203.
  • 51. Schorsch C, Boles E, Schaffer S: Biotechnological production of sphingoid bases and their applications. Appl Microbiol Biot 2013, 97(10):4301-8.
  • 52. Corinaldesi C, Barone G, Marcellini F, Dell'Anno A, Danovaro R: Marine Microbial-Derived Molecules and Their Potential Use in Cosmeceutical and Cosmetic Products. Mar Drugs 2017, 15(4).
  • 53. Cevenini E, Invidia L, Lescai F, Salvioli S, Tieri P, Castellani G, et al.: Human models of aging and longevity. Expert opinion on biological therapy 2008, 8(9):1393-405.
  • 54. Anunciato TP, da Rocha PA: Carotenoids and polyphenols in nutricosmetics, nutraceuticals, and cosmeceuticals. J Cosmet Dermatol-Us 2012, 11(1):51-4.
  • 55. Shen HJ, Hu JJ, Li XR, Liu JZ: Engineering of Escherichia coli for Lycopene Production Through Promoter Engineering. Current pharmaceutical biotechnology 2015, 16(12):1094-103.
  • 56. Coelho SG, Valencia JC, Yin L, Smuda C, Mahns A, Kolbe L, et al.: UV exposure modulates hemidesmosome plasticity, contributing to long-term pigmentation in human skin. The Journal of pathology 2015, 236(1):17-29.
  • 57. Chen CY, Lin LC, Yang WF, Bordon J, Wang HMD: An Updated Organic Classification of Tyrosinase Inhibitors on Melanin Biosynthesis. Curr Org Chem 2015, 19(1):4-18.
  • 58. Song TY, Chen CH, Yang NC, Fu CS, Chang YT, Chen CL: The Correlation of in Vitro Mushroom Tyrosinase Activity with Cellular Tyrosinase Activity and Melanin Formation in Melanoma Cells A2058. J Food Drug Anal 2009, 17(3):156-62.
  • 59. Khotimchenko YS: Tyrosinase inhibitors from marine algae. Brit J Dermatol 2016, 175(3):457-8.
  • 60. Chang TS, Tsai YH: Inhibition of Melanogenesis by Yeast Extracts from Cultivations of Recombinant Pichia pastoris Catalyzing ortho-Hydroxylation of Flavonoids. Current pharmaceutical biotechnology 2015, 16(12):1085-93.
  • 61. Nunez-Pons L, Avila C, Romano G, Verde C, Giordano D: UV-Protective Compounds in Marine Organisms from the Southern Ocean. Mar Drugs 2018, 16(9).
  • 62. Kogej T, Gostincar C, Volkmann M, Gorbushina AA, Gunde-Cimerman N: Mycosporines in extremophilic fungi - Novel complementary osmolytes? Environ Chem 2006, 3(2):105-10.
  • 63. Sy C, Dangles O, Borel P, Caris-Veyrat C: Interactions between Carotenoids from Marine Bacteria and Other Micronutrients: Impact on Stability and Antioxidant Activity. Mar Drugs 2015, 13(11):7020-39.
  • 64. Hua DL, Xu P: Recent advances in biotechnological production of 2-phenylethanol. Biotechnology advances 2011, 29(6):654-60.
  • 65. Chantasuban T, Santomauro F, Gore-Lloyd D, Parsons S, Henk D, Scott RJ, et al.: Elevated production of the aromatic fragrance molecule, 2-phenylethanol, using Metschnikowia pulcherrima through both de novo and ex novo conversion in batch and continuous modes. J Chem Technol Biot 2018, 93(8):2118-30.
  • 66. Schalk M, Pastore L, Mirata MA, Khim S, Schouwey M, Deguerry F, et al.: Toward a Biosynthetic Route to Sclareol and Amber Odorants. J Am Chem Soc 2012, 134(46):18900-3.
  • 67. CODIF. Epidermis 4.0: CODIF; [Available from: http://www.codif-tn.com/en/principesactifs/epidermist-4-0/.
  • 68. CODIF. EPS Seafill [Available from: http://www.codif-tn.com/wp-content/uploads/2016/02/EPS-SEAFILL-BROCHURE-GB.pdf.
  • 69. ALGENIST. Alguronic Acid: ALGENIST; [Available from: https://www.algenist.com/pages/technology.
  • 70. Lipotec. SEACODE: Lipotec; [Available from: https://www.lipotec.com/en/products/seacode-trade-marine-ingredient/.
  • 71. Tarımcı N. Kontrollü Salım Sistemlerinin Kozmetolojide Kullanımları. In: A. Z, editor. Kontrollü Salım Sistemleri. İstanbul: Kontrollü Salım Sistemleri Derneği Yayını No:1; 2014.