Klorpromazin Hidroklorürün İnsan Eritrositleri Tarafından Tutulumunun in Vitro Karakterizasyonu: Konsantrasyon ve Hematokritin Etkisi

Eritrositlerin hızla penetre olan maddeler için herhangi bir bariyer etkisi oluşturması beklenmese de eritrositlerle yavaş dengelenen ve/veya aşırı partisyon gösteren bileşiklerin dağılımı ve eliminasyonu üzerinde önemli etkileri olabilir. Klorpromazin hidroklorür CPZ , eritrosit tutulumu üzerine konsantrasyon ve hematokritin etkisini incelemek amacıyla model ilaç olarak seçilmiştir. Hematokrit değerleri 4.06-7.76x106 hücre/ mL olan eritrosit süspansiyonu ve tam kan değişik CPZ konsantrasyonları 5, 7.5, 10, 15 μg/mL ile inkübe edilmiştir. Eritrosit membranı süspansiyonu ve hemolizat da CPZ 5, 15 μg/mL ile inkübe edilmiştir. Tampon fazındaki CPZ’nin absorbansı 30 dakika süreyle 2.5 dakika aralıklarla otomatik olarak ölçülmüştür. Ortalama dengeye ulaşma zamanı ve eğri altında kalan alan AUC tampon konsantrasyon zaman profillerinden tayin edilirken ilaç tutulum derecesi ve eritrosit membranından permeasyon katsayısı eritrosit konsantrasyon zaman profillerinden hesaplanmıştır. Bütün şartlarda tampon ve eritrositler arasındaki dengeye 15 dakika içinde erişilmiş ve AUC ile CPZ dozu arasında lineer bir korelasyon bulunmuştur. Eritrosit süspansiyonu kullanıldığında tutulum hem konsantrasyon hem de hematokritten etkilenmiştir. Buna karşılık tam kan süspansiyonu kullanıldığında CPZ tutulumu %34 civarı ilaç konsantrasyonundan etkilenmemektedir. Ek olarak bütün koşullarda CPZ için permeasyon katsayısı 0.34-6.75x10-6 cm/s sınırları arasındadır.

In Vitro Characterization of Chlorpromazine Hydrochloride Uptake by Human Erythrocytes: Effect of Concentration and Hematocrit

Although erythrocytes are not expected to constitute any barrier effect for rapidly penetrating substances, they may have profound effects on the distribution and elimination of compounds that slowly equilibrates and/or extensively partition into erythrocytes. Chlorpromazine hydrochloride CPZ was chosen as a model compound to investigate the effect of concentration and hematocrit on erythrocyte uptake. Suspensions of erythrocyte with hematocrit values of 4.06-7.76x106 cell/mL and whole blood were incubated with CPZ solutions 5, 7.5, 10, 15 μg/mL . Suspensions of erythrocyte membranes and hemolysates were also incubated with CPZ 5, 15 μg/mL . Absorbance of CPZ in buffer phase was automatically measured at 2.5 min. intervals for 30 min. Mean time for equilibration and the area under curve values AUC were determined from buffer concentration time profiles, whereas degree of drug uptake and permeation coefficient across erythrocyte membranes were estimated from the erythrocyte concentration time profiles. For all conditions, equilibrium between buffer and erythrocytes was achieved within 15 min, and there was a linear correlation between the AUC values and CPZ dose. When erythrocyte suspension was used, uptake was found to be influenced by both concentration and hematocrit. On the other hand, CPZ uptake about 34% was not influenced by drug concentration when whole blood suspension was used. In addition, in all conditions, the permeation coefficients for CPZ was found to be in the range of 0.34-6.75x10-6 cm/s.

___

  • Rowland, M., Evans, A.M. (1991). Physiological models of hepatic elimination. In: (Rescigno, A., Thakur, A.K. (Eds.), New Trends in Pharmacokinetics. Plenum Press, New York, pp. 83-102.
  • Hinderling P.H. (1997). Red blood cells: a neglected compartment in pharmacokinetics and pharmacodynamics. Pharmacol. Rev., 49(3), 279-295.
  • Highley M.S., DeBruijin E.A. (1996). Erythrocytes and the transport of endogenous compounds. Pharm. Res., 13,186-195.
  • AbuTarif M.A., Taft D.R. (2002). Simulation of the pharmacokinetic profile of methazol- amide in blood: Effect of erythrocyte carbonic anhydrase binding on drug disposition. Pharm. Res., 19(4), 551-555.
  • Vaidyanathan S., Boroujerdi M. (2000). Interaction dexrazoxane with red blood cells and hemoglobin alters pharmacokinetics of doxorubicin. Cancer Chemother. Pharma- col., 46, 93-100.
  • Colleste P., Garle M., Rawlins M.D., Sjoeqvist F. (1976). Interindividual difference is chlorthalidone concentration in plasma and red cells of man after single and multiple doses. Eur.J. Clin. Pharmacol., 9, 319-325.
  • Fleuren H.L.J., Van Rossum J.M. (1977). Nonlinear relationship between plasma and red blood cells pharmacokinetics of chlorthalidone in man. J. Pharmacokinet. Bio- pharm., 5, 359-375.
  • Wallace S.M., Riegelman S. (1977). Uptake of acetazolamide by human erythrocytes. J Pharm. Sci., 66, 729-731.
  • Bayne W.F., Tao T.F., Rogers G., Chu L.C., Theeuwes F. (1981). Time course and dispo- sition of methazolamide in human plasma and red blood cells. J. Pharm. Sci., 70,75-80.
  • Lin J.H., Lin T.H., Cheng H. (1992). Uptake and stereoselective binding of enantiomers of MK-927, a potent carbonic anhydrase inhibitor, by human erythrocytes in vitro. Pharm. Res., 9. 339-344.
  • Biollaz J., Munafo A., Buclin T., Gervasoni J-P., Magnin J-L., Jaquet F., Brunner- Ferber F. (1995). Whole blood pharmacokinetics and metabolic effects of the topical carbonic anhydrase inhibitor dorzolamide. Eur. J. Clin. Pharmacol., 47, 453-460.
  • Agarwal R.P., McPherson R.A., Threatte G. A. (1986). Evidence for a cyclosporin-bind- ing protein in human erythrocytes. Transplantation, 42, 627-632.
  • Hooks M.A, (1994). Tacrolimus, a new immunosuppressant-a review of the literature. Ann. Pharmacother., 28, 501-511.
  • Chiou, W.L. (1984). A new model-independent physiological approach to study hepatic drug clearance and its applications. Int. J. Clin. Pharmacol. Ther. Toxicol., 22, 577- 590.
  • Lee, H.J., Chiou, W.L. (1989). Erythrocytes as barriers for drug elimination in the iso- lated rat liver. I. Doxorubicin. Pharm. Res., 6, 833-839.
  • Lee, H.J., Chiou, W.L. (1989). Erythrocytes as barriers for drug elimination in the iso- lated rat liver. II. Propranolol. Pharm. Res., 6, 840-843.
  • Martindale The Extra Pharmacopoeia (28th Ed.), The Pharmaceutical Press, 1989, S.1509-17.
  • Kayaalp, O. (1997). ‘Rasyonel Tedavi Yönünden Tıbbi Farmakoloji’, Feryal Matbaacılık, Ankara.
  • Bickel, M. H. (1975). Binding of chlorpromazine and imipramine to red cells, albumin, lipoproteins and other blood components. J. Pharm. Pharmacol., 27, 733-738.
  • Owen, N. E., Gunn, R. B. (1983). Kinetic mechanism of chlorpromazine inhibition erythrocyte 3-o-methylglucose transport. Biochim. Biophys. Acta., 727, 213-216.
  • Benga, G., Ionescu, M., Popescu, O., Pop, I. V. (1983). Effect of chlorpromazine on pro- teins in human erythrocyte membranes as inferred from spin labeling and biochemical analyses. Mol. Pharmacol., 23, 771-778.
  • Sheetz, M.P., Singer, S. J. (1974). Biological membranes as bilayer couples a molecular mechanism of drug-erythrocyte interactions. Proc. Nat. Acad. Sci., 71(11), 4457-4461.
  • Elferink, J. G. R. (1977). The asymmetric distribution of chlorpromazine and its quater- nary analogue over the erythrocyte membrane. Biochem. Pharmacol., 26, 2411-2416.
  • Ahyayaucha H., Gallego M., Casis O. and Bennouna M. (2006). Changes in erythrocyte morphology induced by imipramine and chlorpromazine. J. Physiol. Biochem., 62 (3), 199-206.
  • Bhattacharryya, M., Chaudri, U., Poddar R.K. (1990). Studies on the interaction of chlorpromazine with haemoglobin. Int. J. Biol. Macromol., 12, 297-301.
  • Cornelius, A. S., Reilly, M. P., Suzuki, M., Asakura, T., Horiuchi, K., (1994). The mecha- nism of chlorpromazine-induced red blood cell swelling. Gen. Pharmacol., 25 (1), 205- 210.
  • Lieber, M. R., Lange, Y., Weinstein, R. S., Steck, T. L. (1984). Interaction of chlorproma- zine with the human erythrocyte membrane. J. Biol. Chem., 259, 9225-9234.
  • Sahin S, Rowland M. (2007). Influence of erythrocytes on the hepatic distribution ki- netics of urea and thiourea. Eur J Pharm Sci., 31(3-4),180-189.
  • Luxnat, M., Galla, J.H. (1986). Partition of chlorpromazine into lipid bilayer mem- branes: the effect of membrane structure and composition. Biochim. Biophys. Acta., 856, 274-282.
  • Bai, A. S., Abramson, F. P. (1984). Effects of chlorpromazine on the disposition and beta-adrenergic blocking activity of propranolol in the dog. J. Pharmacokin. Biopharm., 12(3), 333-349.
  • Ehrnebo M., Agurell S., Boreus L.O,, Gordon E., Lonroth U. (1974). Pentazocine bind- ing to blood cells and plasma proteins. Clin. Pharmacol. Ther., 16(3), 424-429.
  • Tamura A., Sujimoto K., Sato T., Fujii T (1990). Effect of haematocrit, plasma protein concentration and temperature of drug-containing blood in vitro on the concentration of the drug in plasma. J. Pharm. Pharmacol., 42, 577-580.
  • Bhattacharyya J., Bhattacharyya M., Chakraborti A.S., Chaudhuri U., Poddar R.K.(1998). Structural organisations of hemoglobin and myoglobin influence their binding behaviour with phenothiazines. Int. J. Biol. Macromol., 23(1):11-18.
  • Chen J.Y., Brunauer L.S., Chu F.C.. Helsel C.M., Gedde M.M., Huestis W.H. (2003). Selective amphipathic nature of chlorpromazine binding to plasma membrane bilayers. Biochim. Biophys. Acta., 1616(1), 95-105.