Galaxaura rugosa (J. Ellis & Solander) J.V. Lamouroux for Cosmeceutical Application: Antioxidant, Antibacterial, Tyrosinase and Elastase Inhibition Properties

Red seaweeds are considered novel sources of natural products with diverse biological activities that can be harness for drug synthesis. The bioactive properties of red macroalga, Galaxaura rugosa were studied. Results showed that the macroalga contain a total phenolic content (TPC) of 12.11 ± 0.22 mg GAE/g. The antioxidant activity of G. rugosa exhibited potent ABTS+ radical scavenging activity (IC50 = 81.00 μg GAE/ml) and high copper reduction capacity (IC50 = 19.26 μg GAE/ml). Assessment of tyrosinase and elastase inhibition properties of G. rugosa extract showed that the alga has effective inhibitory activity with IC50 of 88.00 μg GAE/ml and IC50 of 243.00 μg GAE/ml, respectively which are more efficient than kojic acid and tocopherol. The seaweed extract exhibited potent antibacterial activities against common bacterial skin pathogens like Staphylococcus aureus (Minimum Inhibitory Concentration (MIC) = 125 μg/ml), Methicillin-resistant Staphylococcus aureus (MIC = 125 μg/ml), and Staphylo- coccus epidermidis (MIC = 250 μg/ml). This study is considered a pioneering investigation that shows the potential of G. rugosa for cosmeceutical application.

Galaxaura rugosa (J. Ellis & Solander) J.V. Lamouroux for Cosmeceutical Application: Antioxidant, Antibacterial, Tyrosinase and Elastase Inhibition Properties

Red seaweeds are considered novel sources of natural products with diverse biological activities that can be harness for drug synthesis. The bioactive properties of red macroalga, Galaxaura rugosa were studied. Results showed that the macroalga contain a total phenolic content (TPC) of 12.11 ± 0.22 mg GAE/g. The antioxidant activity of G. rugosa exhibited potent ABTS+ radical scavenging activity (IC50 = 81.00 μg GAE/ml) and high copper reduction capacity (IC50 = 19.26 μg GAE/ml). Assessment of tyrosinase and elastase inhibition properties of G. rugosa extract showed that the alga has effective inhibitory activity with IC50 of 88.00 μg GAE/ml and IC50 of 243.00 μg GAE/ml, respectively which are more efficient than kojic acid and tocopherol. The seaweed extract exhibited potent antibacterial activities against common bacterial skin pathogens like Staphylococcus aureus (Minimum Inhibitory Concentration (MIC) = 125 μg/ml), Methicillin-resistant Staphylococcus aureus (MIC = 125 μg/ml), and Staphylo- coccus epidermidis (MIC = 250 μg/ml). This study is considered a pioneering investigation that shows the potential of G. rugosa for cosmeceutical application.

___

  • Kremb, S., Müller, C., Schmitt-Kopplin, P., Voostra, C. R., “Bioactive potential of marine macroalgae from the central Red sea (Saudi Arabia) assessed by high-throughput imaging-based phenotypic profiling”, Marine Drugs, 15: 80, (2017).
  • Arguelles, E. D. L. R., Sapin, A. B., “Chemical composition and bioactive properties of Sargassum aquifolium (Turner) C. Agardh and its potential for pharmaceutical application”, Philippine Journal of Science, 151(S1):9-24, (2021).
  • Arguelles, E. D. L. R., Sapin, A. B., “Bioactive properties of Sargassum siliquosum J. Agardh (Fucales, Ochrophyta) and its potential as source of skin-lightening active ingredient for cosmetic application”, Journal of Applied Pharmaceutical Science, 10(7): 51-58, (2020).
  • Thiyagarasaiyar, K., Goh, B. H., Jeon, Y. J., Yow, Y. Y., “Algae metabolites in cosmeceutical: An overview of current applications and challenges”, Marine Drugs, 18: 323, (2020), doi:10.3390/md18060323.
  • Arguelles, E. D. L. R., “Evaluation of antioxidant capacity, tyrosinase inhibition, and antibacterial activities of brown seaweed, Sargassum ilicifolium (Turner) C. Agardh 1820 for cosmeceutical application”, Journal of Fisheries and Environment, 45(1):64-77, (2021).
  • Susano, P., Silva, J., Alves, C., Martins, A., Gaspar, H., Pinteus, S., Mouga, T., Goettert, M., I., Petrovski, Ž., Branco, L.B., Pedrosa, R.,“ Unravelling the dermatological potential of the brown seaweed Carpomitra costata”, Marine Drugs, 19: 135, (2021). doi:10.3390/md19030135.
  • Arguelles, E. D. L. R., Sapin, A. B.,“Bioprospecting of Turbinaria ornata (Fucales, Phaeophyceae) for cosmetic application: Antioxidant, tyrosinase inhibition and antibacterial activities”, Journal of the International Society for Southeast Asian Agricultural Sciences (ISSAAS), 26(2): 30-41, (2020).
  • Nunes, N., Ferraz, S., Valente, S., Baretto, M.C., Pinheiro de Carvalho, M. A. A., “Biochemical composition, nutritional value, and antioxidant properties of seven seaweed species from the Madeira Archipelago”, Journal of Applied Phycology, 29:2427–2437, (2017).
  • Al-Enazi, N. M., Awaad, A. S., Alqasoumi, S. I., Alwethairi, M. F.,“ Biological activities of the red algae Galaxaura rugosa and Liagora hawaiiana butters”, Saudi Pharmaceutical Journal, 26:25–32, (2018).
  • Trono, G. C., Jr., “Field guide and atlas of the seaweed resources of the Philippines”, Manila: Bookmark Inc, (1997).
  • https://www.algaebase.org. (09.30.2021).
  • Gao, L., Wang, S., Oomah, B. D., Mazza, G. “Wheat quality: Antioxidant activity of wheat millstreams”. In: Ng P., Wrigley C.W., eds. Wheat Quality Elucidation. St. Paul, Minnesota, USA: AACC International, 219-233. (2002).
  • Nuñez Selles, A., Castro, H. T. V., Aguero, J. A., Gonzalez, J. G., Naddeo, F., De Simone, F., et al., “Isolation and quantitative analysis of phenolic antioxidants, free sugars and polyols from mango (Mangifera indica L.) stem bark aqueous decoction used in Cuba as a nutritional supplement”, Journal of Agricultural and Food Chemistry, 50:762-766, (2002).
  • Re, R., Pellegrine, N., Proteggente, A., Pannala, A., Yang, M., Rice-Evans, C. “Antioxidant activity applying an improved ABTS radical cation decolorization assay”, Free Radical Biology and Medicine, 26:1231-1237, (1999).
  • Alpinar, K., Özyurek, M., Kolak, U., Guclu, K., Aras, Ç., Altun, M., et al., “Antioxidant capacities of some food plants wildly grown in Ayvalik of Turkey”, Food Science and Technology Research, 15:59 – 64, (2009).
  • Arguelles, E. D. L. R., Monsalud, R. G., Sapin, A. B., “Chemical composition and In vitro antioxidant and antibacterial activities of Sargassum vulgare C. Agardh from Lobo, Batangas, Philippines”, International Society for Southeast Asian Agricultural Sciences, 25:112-122, (2019).
  • Hapsari, R., Elya, B., Amin, J. “Formulation and evaluation of antioxidant and tyrosinase inhibitory effect from gel containing the 70% ethanolic Pleurotus ostreatus extract”, International Journal of Medicinal and Aromatic Plants, 2:135-140, (2012).
  • Moon, J. Y., Yim, E. Y., Song, G., Lee, N. H., Yun, C. G. “Screening of elastase and tyrosinase inhibitory activity from Jeju Island plants”, EurAsian Journal of BioSciences, 4:41-53, (2010).
  • Sivagnanam, S. R., Yin, S., Choi, J. H., Park, Y. B., Woo, H. C., Chun, B. S., “Biological properties of fucoxanthin in oil recovered from two brown seaweeds using supercritical CO2 extraction”, Marine Drugs, 13:3422-3442, (2015).
  • Bhuyar, P., Rahim, M. H., Sundararaju, S., Maniam, G. P., Govindan, N., “Antioxidant and antibacterial activity of red seaweed; Kappaphycus alvarezii against pathogenic bacteria”, Global Journal of Environmental Science and Management, 6(1): 47-58, (2020).
  • Chakraborty, K., Maneesh, A., Makkar, F., “Antioxidant Activity of Brown Seaweeds”, Journal of Aquatic Food Product Technology, 26:406–419, (2017).
  • Khaled, N., Hiba, M., Asma, C., “Antioxidant and antifungal activities of Padina pavonica and Sargassum vulgare from the Lebanese Mediterranean coast”, Advances in Environmental Biology, 6:42–48, (2012).
  • Arguelles, E. D. L. R., Sapin, A. B., “In vitro antioxidant, alpha-glucosidase inhibition and antibacterial properties of Turbinaria decurrens Bory (Sargassaceae, Ochrophyta)”, Asia-Pacific Journal of Science and Technology, 25(3), (2020), https://so01.tci-thaijo.org/index.php/APST/article/view/240714/165247.
  • Blamo, P. A., Pham, H. N. T., Nguyen, T. H., “Maximising phenolic compounds and antioxidant capacity from Laurencia intermedia using ultrasound-assisted extraction”, AIMS Agriculture and Food, 6(1): 32-48, (2021).
  • Kosanić, M., Ranković, B., Stanojković, T., “Brown macroalgae from the Adriatic Sea as a promising source of bioactive nutrients”, Journal of Food Measurement and Characterization, 13: 330–338, (2019).
  • Choi, J. S., Bae, H. J., Kim, S. J., “In vitro antibacterial and anti-inflammatory properties of seaweed extracts against acne inducing bacteria, Propionibacterium acnes”, Journal of Environmental Biology, 32(3): 313-318, (2011).
  • Jesumani, V., Du, H., Aslam, M., Pei, P., Huang, N., “Potential Use of Seaweed Bioactive Compounds in Skincare—A Review”, Marine Drugs, 17(12): 688, (2019).
  • Heo, S. H., Park, S. I., Lee, J., Jung, S.W., Shin, M. S.,“ Antimicrobial, antioxidative, elastase and tyrosinase inhibitory effect of supercritical and hydrothermal Halopteris scoparia extract”, Turkish Journal of Computer and Mathematics Education, 12(5): 407-413, (2021).
  • Arguelles, E. D. L. R., Sapin, A. B., “Nutrient composition, Antioxidant and Antibacterial Activities of Ulva prolifera O.F. Müller”, Squalen Bulletin of Marine and Fisheries Postharvest and Biotechnology, (2021), doi:10.15578/squalen.550.