Antidiabetics have Beneficial Effects on Epileptic Seizures in Diabetic Patients: A Narrative Review

Several studies have reported the association of diabetes mellitus with epilepsy. With respect to the management of diabetes–epilepsy patients, these studies pointed out the beneficial effects of the ketogenic diet. Ketogenic diets may have antiepileptic properties as the utilization of ketone bodies in the brain instead of glucose delays or inhibits the degradation of γ-aminobutyric acid (GABA) transaminase, and thereby enhances the concentration of GABA. By restoring normal intracerebral GABA levels and reducing the cerebral inflammation linked to epilepsy, metformin is useful in preventing seizures. Sitagliptin has a positive impact on epilepsy by acting as an antioxidant and restoring normal GABA levels. Weight gain is a well-known side effect of anti-seizure medications. Sodium valproate can cause dyslipidemia and inhibits glucose transporter-1 in the brain, putting patients with epilepsy and diabetes at risk of developing atherosclerosis. Cellular stress in diabetes and epilepsy induces autophagy and activates lipid peroxidation, which leads to ferroptosis. It’s worth looking at how ferroptosis and autophagy contribute to the etiology of diabetes and epilepsy, as well as how antiepileptics and antidiabetics alter these pathological processes. Therefore, it was worth performing a narrative-review on the effects of antiepileptics on diabetes, the effect of antidiabetics on epilepsy, as well the net results of antiepileptic–antidiabetic interactions in those patients.

Antidiabetics have Beneficial Effects on Epileptic Seizures in Diabetic Patients: A Narrative Review

Several studies have reported the association of diabetes mellitus with epilepsy. With respect to ‎the management of diabetes–epilepsy patients, these studies pointed out the beneficial effects of ‎the ketogenic diet. Ketogenic diets may have antiepileptic properties as the utilization of ketone ‎bodies in the brain instead of glucose delays or inhibits the degradation of γ-aminobutyric acid ‎‎(GABA) transaminase, and thereby enhances the concentration of GABA. By restoring normal ‎intracerebral GABA levels and reducing the cerebral inflammation linked to epilepsy, metformin ‎is useful in preventing seizures. Sitagliptin is one of the dipeptidyl dipeptidase-4 inhibitors, ‎which have a positive impact on epilepsy in experimental animal models with pentylenetetrazole-‎induced seizures, by reducing reactive oxygen species, (antioxidant effect), normalization of ‎GABA level, suppression of neuroinflammation (autophagy) and reduced neuronal damage ‎‎(antiapoptotic effect). Weight gain is a well-known side effect of anti-seizure medications. ‎Sodium valproate can cause dyslipidemia and inhibit glucose transporter-1 in the brain, putting ‎patients with epilepsy and diabetes at risk of developing atherosclerosis. It's worth looking at ‎how ferroptosis and autophagy contribute to the etiology of diabetes and epilepsy, as well as ‎how antiepileptics and antidiabetics alter these pathological processes. Therefore, it was worth ‎performing a narrative-review on the effects of antiepileptics on diabetes, the effect of ‎antidiabetics on epilepsy, as well the net results of antiepileptic–antidiabetic interactions in those ‎patients.‎

___

  • ‎1. Amanat M, Thijs RD, Salehi M, Sander JW. Seizures as a clinical manifestation in somatic ‎autoimmune disorders. Seizure 2019, 64: 59-64. doi: 10.1016/j.seizure.2018.11.012 ‎
  • ‎2. Ong MS, Kohane IS, Cai T, Gorman MP, Mandl KD. Population-level evidence for an ‎autoimmune etiology of epilepsy. JAMA Neurolology 2014, 71(5): 569-574. doi: ‎‎10.1001/jamaneurol.2014.188. ‎
  • ‎3. Keezer MR, Sisodiya SM, Sander JW. Comorbidities of epilepsy: current concepts and future ‎perspectives. The Lancet Neurolology 2016, 15(1): 106-115. doi: 10.1016/S1474-4422(15)00225-‎‎2.‎
  • ‎4. Mastrangelo M, Tromba V, Silvestri F, Costantino F. Epilepsy in children with type 1 diabetes ‎mellitus: Pathophysiological basis and clinical hallmarks. European Journal of Paediatric ‎Neurology 2019, 23(2): 240-247. doi: 10.1016/j.ejpn.2018.12.006.‎
  • ‎5. Lu CL, Chang YH, Sun Y, Li CY. A population-based study of epilepsy incidence in ‎association with type 2 diabetes and severe hypoglycaemia. Diabetes Research and Clinical ‎Practice 2018, 140: 97-106. doi: 10.1016/j.diabres.2018.03.020. ‎
  • ‎6. Shlobin NA, Sander JW. Drivers for the comorbidity of type 2 diabetes mellitus and epilepsy: ‎A scoping review. Epilepsy & Behaviour 2020; 106, 107043. doi: 10.1016/j.yebeh.2020.107043‎
  • ‎7. Rusek M, Pluta R, Ułamek-Kozioł M, Czuczwar SJ. Ketogenic diet in Alzheimer's disease. ‎International Journal of Molecular Sciences 2019; 20 (16):3892. doi: 10.3390/ijms20163892.‎
  • ‎8. Vining EP, Freeman JM, Ballaban-Gil K, Camfield CS, Camfield PR, Holmes GL, Shinnar S, ‎Shuman R, Trevathan E, Wheless JW. A multicenter study of the efficacy of the ketogenic diet. ‎Archives of Neurology 1998; 55(11): 1433-1437. doi: 10.1001/archneur.55.11.1433. ‎ ‎9. Sampaio LP. Ketogenic diet for epilepsy treatment. Arquiovs De Neuropsiquiatria 2016; ‎‎74(10): 842-848. doi: 10.1590/0004-282X20160116. ‎
  • ‎10. Calderón N, Betancourt L, Hernández L, Rada P. A ketogenic diet modifies glutamate, ‎gamma-aminobutyric acid and agmatine levels in the hippocampus of rats: A microdialysis study. ‎Neuroscience Letetrs 2017; 642: 158-162. doi: 10.1016/j.neulet.2017.02.014.‎
  • ‎11. Dahlin M, Månsson JE, Åmark P. CSF levels of dopamine and serotonin, but not ‎norepinephrine, metabolites are influenced by the ketogenic diet in children with epilepsy. ‎Epilepsy Research 2012; 99(1-2): 132-138. doi: 10.1016/j.eplepsyres.2011.11.003.‎
  • ‎12. Rogawski MA, Löscher W, Rho JM. Mechanisms of action of antiseizure drugs and the ‎ketogenic diet. Cold Spring Harb Perspect Med 2016; 6(5): a022780. doi: ‎‎10.1101/cshperspect.a022780.‎
  • ‎13. Ziemann AE, Schnizler MK, Albert GW, Severson MA, Howard MA 3rd, Welsh MJ, ‎Wemmie JA. Seizure termination by acidosis depends on ASIC1a. Nature Neuroscience 2008; ‎‎11(7): 816-822. doi: 10.1038/nn.2132. ‎
  • ‎14. Mehrabi S, Sanadgol N, Barati M, Shahbazi A, Vahabzadeh G, Barzroudi M, Seifi M, ‎Gholipourmalekabadi M, Golab F . Evaluation of metformin effects in the chronic phase of ‎spontaneous seizures in pilocarpine model of temporal lobe epilepsy. Metabolic Brain Disease ‎‎2018; 33(1): 107-114. doi: 10.1007/s11011-017-0132-z.‎
  • ‎15. Vazifehkhah S, Khanizadeh AM, Mojarad TB, Nikbakht F. The possible role of progranulin ‎on anti-inflammatory effects of metformin in temporal lobe epilepsy. Journal of Chemical ‎Neuroanatomy 2020; 109: 101849. doi: 10.1016/j.jchemneu.2020.101849.‎
  • ‎16. Türe H, Keskin Ö, Çakır Ü, Aykut Bingöl C, Türe U. The frequency and severity of ‎metabolic acidosis related to topiramate. Journal of International Medical Research 2016; 44(6): ‎‎1376-1380. doi: 10.1177/0300060516669897. ‎
  • ‎17. Mastrangelo M. Lennox-Gastaut Syndrome: A state of the art review. Neuropediatrics 2017; ‎‎48(3): 143-151. doi: 10.1055/s-0037-1601324. ‎
  • ‎18. Paul E, Conant KD, Dunne IE, Pfeifer HH, Lyczkowski DA, Linshaw MA, Thiele EA. ‎Urolithiasis on the ketogenic diet with concurrent topiramate or zonisamide therapy. Epilepsy ‎Research 2010; 90(1-2): 151-156. ‎
  • ‎19. Manitpisitkul P, Curtin CR, Shalayda K, Wang SS, Ford L, Heald D. Pharmacokinetic ‎interactions between topiramate and pioglitazone and metformin. Epilepsy Research, 2014; ‎‎108(9): 1519-1532. doi: 10.1016/j.eplepsyres.2014.08.013.‎
  • ‎20. Lewine JD, Paulson K, Bangera N, Simon BJ. Exploration of the impact of brief noninvasive ‎vagal nerve stimulation on EEG and event-related potentials. Neuromodulation 2019; 22(05): ‎‎564-572. doi: 10.1111/ner.12864.‎
  • ‎21. Constantinescu V, Matei D, Constantinescu I, Cuciureanu DI. Cardiac autonomic modulation ‎in drug-resistant epilepsy patients after vagus nerve stimulation therapy. Polish Journal of ‎Neurology and Neurosurgery 2020; 54(4): 329-336. doi: 10.5603/PJNNS.a2020.0044‎
  • ‎22. Shmuely S, van der Lende M, Lamberts RJ, Sander JW, Thijs RD. The heart of epilepsy: ‎Current views and future concepts. Seizure, 2017; 44: 176-183. doi: ‎‎10.1016/j.seizure.2016.10.001.‎
  • ‎23. Li J, Sun M, Wang X. The adverse-effect profile of lacosamide. Expert Opinion on Drug ‎Safety 2020; 19(2): 131-138. doi: 10.1080/14740338.2020.1713089. ‎
  • ‎24. Chinnasami S, Rathore C, Duncan JS. Sinus node dysfunction: an adverse effect of ‎lacosamide. Epilepsia 2013; 54(06): e90-e93. doi: 10.1111/epi.12108. ‎
  • ‎25. Malissin I, Baud FJ, Deveaux M, Champion S, Deye N, Megarbane B. Fatal lacosamide ‎poisoning in relation to cardiac conduction impairment and cardiovascular failure. Clinical ‎Toxicology (Phila) 2013; 51(4): 381-382. doi: 10.3109/15563650.2013.778993.‎
  • ‎26. Loomba RS, Singh AK, Kovach J, Gudausky TM. Lacosamide-induced atrial tachycardia in ‎a child with hypoplastic left-heart syndrome: the importance of assessing additional ‎proarrhythmic risks. Cardiology in the Young 2015; 25(04): 806-809. doi: ‎‎10.1017/S1047951114001188.‎
  • ‎27. Runge U, Arnold S, Brandt C, Reinhardt F, Kühn F, Isensee K, Ramirez F, Dedeken P, ‎Lauterbach T, Noack-Rink M, Mayer T. A noninterventional study evaluating the effectiveness ‎and safety of lacosamide added to monotherapy in patients with epilepsy with partial-onset ‎seizures in daily clinical practice: The VITOBA study. Epilepsia 2015; 56(12): 1921-1930. doi: ‎‎10.1111/epi.13224.‎
  • ‎28. Wood KE, Palmer KL, Krasowski MD. Correlation of elevated lamotrigine and levetiracetam ‎serum/plasma levels with toxicity: A long-term retrospective review at an academic medical ‎center. Toxicological Reports 2021; 8: 1592-1598. doi: 10.1016/j.toxrep.2021.08.005.‎
  • ‎29. Aschenbrenner DS. Lamotrigine may increase risk of arrhythmias. American Journal of ‎Nursing 2021; 121(08): 23. doi: 10.1097/01.NAJ.0000767792.01749.bd.‎
  • ‎30. Mathews SR, Badyal DK, Mathew R. Phenytoin-induced bradycardia and hypotension. ‎Indian Journal of Pharmacology 2019; 51(2): 120-122. doi: 10.4103/ijp.IJP_254_17.‎
  • ‎31. Ashna A, van Helden DF, Dos Remedios C, Molenaar P, Laver DR. Phenytoin reduces ‎activity of cardiac ryanodine receptor 2; A potential mechanism for its cardioprotective action. ‎Molecular Pharmacology 2020; 97(04): 250-258. doi: 10.1124/mol.119.117721.‎
  • ‎32. Altun Y, Yasar E. Effects of valproate, carbamazepine and levetiracetam on Tp-e interval, ‎Tp-e/QT and Tp-e/QTc ratio. Ideggyogyaszati Szemle 2020; 73(3-4): 121-127. doi: ‎‎10.18071/isz.73.0121.‎
  • ‎33. Leonard CE, Brensinger CM, Dawwas GK, Deo R, Bilker WB, Soprano SE, Dhopeshwarkar ‎N, Flory JH, Bloomgarden ZT, Gagne JJ, Aquilante CL, Kimmel SE, Hennessy S. The risk of ‎sudden cardiac arrest and ventricular arrhythmia with rosiglitazone versus pioglitazone: real-‎world evidence on thiazolidinedione safety. Cardiovascular Diabetology 2020; 19(1): 25. doi: ‎‎10.1186/s12933-020-00999-5.‎
  • ‎34. Baczkó I, Husti Z, Lang V, Leprán I, Light PE. Sarcolemmal KATP channel modulators and ‎cardiac arrhythmias. Current Medicinal Chemistry 2011; 18(24): 3640-3661. doi: ‎‎10.2174/092986711796642472.‎
  • ‎35. Brady PA, Terzic A. The sulfonylurea controversy: more questions from the heart. Journal of ‎the American College of Cardiology 1998; 31: 950-956. doi: 10.1016/s0735-1097(98)00038-2. ‎
  • ‎36. Rahmi Garcia RM, Rezende PC, Hueb W. Impact of hypoglycemic agents on myocardial ‎ischemic preconditioning. World Journal of Diabetes 2014; 5(3): 258-266. doi: ‎‎10.4239/wjd.v5.i3.258.‎
  • ‎37. Jansen K, Lagae L. Cardiac changes in epilepsy. Seizure 2010; 19(8): 455-460. doi: ‎‎10.1016/j.seizure.2010.07.008.‎
  • ‎38. Surges R, Shmuely S, Dietze C, Ryvlin P, Thijs RD. Identifying patients with epilepsy at ‎high risk of cardiac death: signs, risk factors and initial management of high risk of cardiac death. ‎Epileptic Disorders 2021; 23(01): 17-39. doi: 10.1684/epd.2021.1254.‎
  • ‎39. Yin J, Ji F, Gharibani P, Chen JD.Vagal nerve stimulation for glycemic control in a rodent ‎model of type 2 diabetes. Obesity Surgery 2019; 29(9): 2869-2877. doi: 10.1007/s11695-019-‎‎03901-9.‎
  • ‎40. Chukwu J, Delanty N, Webb D, Cavalleri GL. Weight change, genetics and antiepileptic ‎drugs. Expert Review of Clinical Pharmacology 2014; 7(1): 43-51. doi: ‎‎10.1586/17512433.2014.857599.‎
  • ‎41. Demir E, Aysun S. Weight gain associated with valproate in childhood. Pediatric ‎Neurolology 2000; 22(5): 361-364. doi: 10.1016/s0887-8994(00)00133-8.‎
  • ‎42. Mikkonen K, Knip M, Pakarinen AJ, Lanning P, Isojärvi JI, Vainionpää LK. Growth and ‎lipid metabolism in girls and young women with epilepsy during pubertal maturation. Epilepsia ‎‎2005; 46(7): 1114-1120. doi: 10.1111/j.1528-1167.2005.34304.x.‎
  • ‎43. Kanemura H, Sano F, Maeda Y, Sugita K, Aihara M. Valproate sodium enhances body ‎weight gain in patients with childhood epilepsy: a pathogenic mechanisms and open-label clinical ‎trial of behavior therapy. Seizure 2012; 21(7): 496-500. doi: 10.1016/j.seizure.2012.05.001.‎
  • ‎44. Rehman T, Sachan D, Chitkara A. (2017). Serum insulin and leptin levels in children with ‎epilepsy on valproate-associated obesity. Journal of Pediatric Neurosciences 2017; 12 (2): 135-‎‎137. doi: 10.4103/jpn.JPN_152_16. ‎
  • ‎45. Çiçek NP, Kamaşak T, Serin M, Okten A, Alver A, Cansu A. The effects of valproate and ‎topiramate use on serum insulin, leptin, neuropeptide Y and ghrelin levels in epileptic children. ‎Seizure, 2018; 58: 90-95. doi: 10.1016/j.seizure.2018.03.013.‎
  • ‎46. Inaloo S, Saki F, Paktinat M, Katibeh P, Nemati H, Ranjbar Omrani G. Evaluation of the ‎metabolic syndrome criteria and body composition in ambulatory children with epilepsy ‎usingsodium valproate and carbamazepine in southern Iran: A case-control study. Iran Journal of ‎Child Neurolology 2020; 14(3): 47-56. PMID: 32952581; PMCID: PMC7468078.‎
  • ‎47. Wong HY, Chu TS, Lai JC, Fung KP, Fok TF, Fujii T, Ho YY. Sodium valproate inhibits ‎glucose transport and exacerbates Glut1-deficiency in vitro. Journal of Cellular Biochemistry, ‎‎2005; 96(4): 775-785. doi: 10.1002/jcb.20555.‎
  • ‎48. Vyas MV, Davidson BA, Escalaya L, Costella J, Saposnik G, Burneo JG. Antiepileptic drug ‎use for treatment of epilepsy and dyslipidemia: Systematic review. Epilepsy Research 2015; 113: ‎‎44-67. doi: 10.1016/j.eplepsyres.2015.03.002.‎
  • ‎49. Yuen AW, Bell GS, Peacock JL, Koepp MM, Patsalos PN, Sander JW. Effects of AEDs on ‎biomarkers in people with epilepsy: CRP, HbA1c and eGFR. Epilepsy Research 2010; 91(2-3): ‎‎187-192. doi: 10.1016/j.eplepsyres.2010.07.011. ‎
  • ‎50. Berthier A, Payá M, García-Cabrero AM, Ballester MI, Heredia M, Serratosa JM, Sánchez ‎MP, Sanz P. Pharmacological interventions to ameliorate neuropathological symptoms in a mouse ‎model of Lafora disease. Molecular Neurobiology 2016; 53(02): 1296-1309. doi: ‎‎10.1007/s12035-015-9091-8. ‎
  • ‎51. Vezzani A, Balosso S, Ravizza T. Neuroinflammatory pathways as treatment targets and ‎biomarkers in epilepsy. Nature Reviews Neurolology 2019; 15(08): 459-472. doi: ‎‎10.1038/s41582-019-0217-x.‎
  • ‎52. Gu J, Ye S, Wang S, Sun W, Hu Y. Metformin inhibits nuclear factor-κB activation and ‎inflammatory cytokines expression induced by high glucose via adenosine monophosphate-‎activated protein kinase activation in rat glomerular mesangial cells in vitro. Chinese Medical ‎Journal (Engl). 2014; 127(09): 1755-1760. PMID: 24791887.‎
  • ‎53. Cameron AR, Morrison VL, Levin D, Mohan M, Forteath C, Beall C, McNeilly AD, Balfour ‎DJ, Savinko T, Wong AK, Viollet B, Sakamoto K, Fagerholm SC, Foretz M, Lang CC, Rena G. ‎Anti-Inflammatory Effects of metformin irrespective of diabetes status. Circulation Research ‎‎2016; 119 (0): 652-665, doi: 10.1161/CIRCRESAHA.116.308445.‎
  • ‎54. Markowicz-Piasecka M, Sikora J, Szydłowska A, Skupień A, Mikiciuk-Olasik E, Huttunen ‎KM. Metformin - a future therapy for neurodegenerative diseases: Theme: Drug discovery, ‎development and delivery in alzheimer's disease Guest editor: Davide Brambilla. Pharmaceutical ‎Research 2017; 34 (12): 2614-2627. doi: 10.1007/s11095-017-2199-y.‎
  • ‎55. Kalender A, Selvaraj A, Kim SY, Gulati P, Brûlé S, Viollet B, Kemp BE, Bardeesy N, ‎Dennis P, Schlager JJ, Marette A, Kozma SC, Thomas G. Metformin, independent of AMPK, ‎inhibits mTORC1 in a rag GTPase-dependent manner. Cell Metabolism 2010; 11(05): 390-401. ‎doi: 10.1016/j.cmet.2010.03.014. ‎ ‎56. Citraro R, Leo A, Constanti A, Russo E, De Sarro G. mTOR pathway inhibition as a new ‎therapeutic strategy in epilepsy and epileptogenesis. Pharmacological Research, 2016; 107: 333-‎‎343. doi: 10.1016/j.phrs.2016.03.039. ‎
  • ‎57. Li D, Wang C, Yao Y, Chen L, Liu G, Zhang R, Liu Q, Shi FD, Hao J. mTORC1 pathway ‎disruption ameliorates brain inflammation following stroke via a shift in microglia phenotype ‎from M1 type to M2 type. The FASEB Journal 2016; 30 (10): 3388-3399. doi: ‎‎10.1096/fj.201600495R.‎
  • ‎58. Rubio Osornio MDC, Custodio Ramírez V, Calderón Gámez D, Paz Tres C, Carvajal ‎Aguilera KG, Phillips Farfán BV. Metformin plus caloric restriction show anti-epileptic effects ‎mediated by mtor pathway inhibition. Cellular and Molecular Neurobiology 2018; 38(7): 1425-‎‎1438. doi: 10.1007/s10571-018-0611-8.‎
  • ‎59. Mohamed MAE, Abdel-Rahman RF, Mahmoud SS, Khattab MM, Safar MM. Metformin ‎and trimetazidine ameliorate diabetes-induced cognitive impediment in status epileptic rats. ‎Epilepsy & Behavior 2020; 104(Pt A): 106893. doi: 10.1016/j.yebeh.2019.106893. ‎
  • ‎60. Zhao RR, Xu XC, Xu F, Zhang WL, Zhang WL, Liu LM, Wang WP. Metformin protects ‎against seizures, learning and memory impairments and oxidative damage induced by ‎pentylenetetrazole-induced kindling in mice. Biochemical and Biophysical Research ‎Communications 2014; 448(4): 414-417. doi: 10.1016/j.bbrc.2014.04.130.‎
  • ‎61. Hussein AM, Eldosoky M, El-Shafey M, El-Mesery M, Ali AN, Abbas KM, Abulseoud OA. ‎Effects of metformin on apoptosis and α-synuclein in a rat model of pentylenetetrazole-induced ‎epilepsy. Can J Physiol Pharmacol 2019; 97 (1): 37-46. doi: 10.1139/cjpp-2018-0266. ‎
  • ‎62. Chen J, Zheng G, Guo H, Shi ZN, Jiang J, Wang XY, Yang X, Liu XY. The effect of ‎metformin treatment on endoplasmic reticulum (ER) stress induced by status epilepticus (SE) via ‎the PERK-eIF2α-CHOP pathway. Bosnin Journal of Basic Medical Sciences 2018; 18 (1): 49-54. ‎doi: 10.17305/bjbms.2017.2044.‎
  • ‎63. Vazifehkhah S, Ali MK, Babae JF, Hashemi P, Alireza MS, Nikbakht F. Evaluation of the ‎ameliorative effects of oral administration of metformin on epileptogenesis in the temporal lobe ‎epilepsy model in rats. Life Sciences 2020; 257: 118066. doi: 10.1016/j.lfs.2020.118066. ‎
  • ‎64. Koepsell H. Glucose transporters in brain in health and disease. Pflügers Archiv - European ‎Journal of Physiology 2020;472(9): 1299-1343. doi: 10.1007/s00424-020-02441-x.‎
  • ‎65. Muraleedharan R, Gawali MV, Tiwari D, Sukumaran A, Oatman N, Anderson J, Nardini D, ‎Bhuiyan MAN, Tkáč I, Ward AL, Kundu M, Waclaw R, Chow LM, Gross C, Rao R, Schirmeier ‎S, Dasgupta B.AMPK-regulated astrocytic lactate shuttle plays a non-cell-autonomous role in ‎neuronal survival. Cell Reports 2020; 32(9): 108092. doi: 10.1016/j.celrep.2020.108092.‎
  • ‎66. Nesci V, Russo E, Arcidiacono B, Citraro R, Tallarico M, Constanti A, Brunetti A, De Sarro ‎G, Leo A. Metabolic alterations predispose to seizure development in high-fat diet-treated mice: ‎the role of metformin. Molecular Neurobiolology 2020; 57(11): 4778-4789. doi: 10.1007/s12035-‎‎020-02062-6.‎
  • ‎67. Nader MA, Ateyya H, El-Shafey M, El-Sherbeeny NA. Sitagliptin enhances the ‎neuroprotective effect of pregabalin against pentylenetetrazole-induced acute epileptogenesis in ‎mice: Implication of oxidative, inflammatory, apoptotic and autophagy pathways. ‎Neurochemistry International 2018; 115: 11-23. doi: 10.1016/j.neuint.2017.10.006.‎
  • ‎68. Zheng Z, Liang P, Hou B, Lu X, Ma Q, Yu X, Han S, Peng B, Chen T, Liu W, Yin J, He X. ‎The effect of dipeptidyl peptidase IV on disease-associated microglia phenotypic transformation ‎in epilepsy. Journal of Neuroinflammation, 2021; 18(01): 112.‎
  • ‎69. Adabi Mohazab R, Javadi-Paydar M, Delfan B, Dehpour AR. Possible involvement of ‎PPAR-gamma receptor and nitric oxide pathway in the anticonvulsant effect of acute ‎pioglitazone on pentylenetetrazole-induced seizures in mice. Epilepsy Research 2012;101(1-2): ‎‎28-35. doi: 10.1016/j.eplepsyres.2012.02.015. ‎
  • ‎70. Simeone TA, Matthews SA, Simeone KA. Synergistic protection against acute flurothyl-‎induced seizures by adjuvant treatment of the ketogenic diet with the type 2 diabetes drug ‎pioglitazone. Epilepsia 2017; 58(8): 1440-1450. doi: 10.1111/epi.13809.‎
  • ‎71. Citraro R, Iannone M, Leo A, De Caro C, Nesci V, Tallarico M, Abdalla K, Palma E, Arturi ‎F, De Sarro G, Constanti A, Russo E. Evaluation of the effects of liraglutide on the development ‎of epilepsy and behavioural alterations in two animal models of epileptogenesis. Brain Research ‎Bulletin 2019; 153: 133-142. doi: 10.1016/j.brainresbull.2019.08.001. ‎
  • ‎72. Wen Y, Wu K, Xie Y, Dan W, Zhan Y, Shi Q. Inhibitory effects of glucagon-like peptide-1 ‎receptor on epilepsy. Biochemical and Biophysical Research Communications 2019; 511(1); 79-‎‎86. doi: 10.1016/j.bbrc.2019.02.028.‎
  • ‎73. Erdogan MA, Yusuf D, Christy J, Solmaz V, Erdogan A, Taskiran E, Erbas O. Highly ‎selective SGLT2 inhibitor dapagliflozin reduces seizure activity in pentylenetetrazol-induced ‎murine model of epilepsy. BMC Neurology 2018; 18(1): 81. doi: 10.1186/s12883-018-1086-4.‎
  • ‎74. Giorgi FS, Biagioni F, Lenzi P, Frati A, Fornai F. The role of autophagy in epileptogenesis ‎and in epilepsy-induced neuronal alterations. Journal of Neural Transmission (Vienna) ‎‎2015;122(6):849-862. doi: 10.1007/s00702-014-1312-1. ‎ ‎ 75. Lu G, Wu Z, Shang J, Xie Z, Chen C, Zhang C. The effects of metformin on autophagy. ‎Biomedicine & Pharmacotherapy 2021;137:111286. doi: 10.1016/j.biopha.2021.111286. ‎
  • ‎76. Fliegel L. Role of genetic mutations of the Na+/H+ exchanger isoform 1, in human disease ‎and protein targeting and activity. Molecular and Cellular Biochemistry 2021;476(2):1221-1232. ‎doi: 10.1007/s11010-020-03984-4. ‎
  • ‎77. Brereton MF, Rohm M, Shimomura K, Holland C, Tornovsky-Babeay S, Dadon D, Iberl M, ‎Chibalina MV, Lee S, Glaser B, Dor Y, Rorsman P, Clark A, Ashcroft FM. Hyperglycaemia ‎induces metabolic dysfunction and glycogen accumulation in pancreatic β-cells. Nature ‎Communications 2016;7:13496. doi: 10.1038/ncomms13496..‎
  • ‎78. Zhao L, Deng L, Zhang Q, Jing X, Ma M, Yi B, Wen J, Ma C, Tu J, Fu T, Shen J. Autophagy ‎contributes to sulfonylurea herbicide tolerance via GCN2-independent regulation of amino acid ‎homeostasis. Autophagy 2018;14(4):702-714. doi: 10.1080/15548627.2017.1407888. ‎
  • ‎79. Shafaroodi H, Barati S, Ghasemi M, Almasirad A, Moezi L. A role for ATP-sensitive ‎potassium channels in the anticonvulsant effects of triamterene in mice. Epilepsy Research ‎‎2016;121:8-13. doi: 10.1016/j.eplepsyres.2016.01.003. ‎
  • ‎80. Mukai T, Kinboshi M, Nagao Y, Shimizu S, Ono A, Sakagami Y, Okuda A, Fujimoto M, Ito ‎H, Ikeda A, Ohno Y. Antiepileptic drugs elevate astrocytic Kir4.1 expression in the rat limbic ‎region. Frontiers in Pharmacology 2018;9:845. doi: 10.3389/fphar.2018.00845. ‎
  • ‎81. Justin A, Ashwini P, Jose JA, Jeyarani V, Dhanabal SP, Manisha C, Mandal SP, Bhavimani ‎G, Prabitha P, Yuvaraj S, Prashantha Kumar BR. Two rationally identified novel glitazones ‎reversed the behavioral dysfunctions and exhibited neuroprotection through ameliorating brain ‎cytokines and oxy-radicals in ICV-LPS neuroinflammatory rat model. Frontiers in Neuroscience ‎‎2020;14:530148. doi: 10.3389/fnins.2020.530148. ‎
  • ‎82. Peng Y, Chen L, Qu Y, Wang D, Zhu Y, Zhu Y. Rosiglitazone Prevents Autophagy by ‎regulating Nrf2-antioxidant response element in a rat model of lithium-pilocarpine-induced status ‎epilepticus. Neuroscience 2021;455:212-222. doi: 10.1016/j.neuroscience.2020.10.026. ‎
  • ‎83. Hong S, Xin Y, HaiQin W, GuiLian Z, Ru Z, ShuQin Z, HuQing W, Li Y, Ning B, ‎YongNan L. The PPARγ agonist rosiglitazone prevents neuronal loss and attenuates ‎development of spontaneous recurrent seizures through BDNF/TrkB signaling following ‎pilocarpine-induced status epilepticus. Neurochemistry International 2013;63(5):405-412. doi: ‎‎10.1016/j.neuint.2013.07.010. ‎
  • ‎84. Wong SB, Cheng SJ, Hung WC, Lee WT, Min MY. Rosiglitazone Suppresses In vitro ‎seizures in hippocampal slice by inhibiting presynaptic glutamate release in a model of temporal ‎lobe epilepsy. PLoS One 2015;10(12):e0144806. doi: 10.1371/journal.pone.0144806..‎
  • ‎85. Zheng W, Zhou J, Song S, Kong W, Xia W, Chen L, Zeng T. Dipeptidyl-Peptidase 4 ‎inhibitor sitagliptin ameliorates hepatic insulin resistance by modulating inflammation and ‎autophagy in ob/ob Mice. International Journal of Endocrinology 2018;2018:8309723. doi: ‎‎10.1155/2018/8309723..‎
  • ‎86. Murase H, Kuno A, Miki T, Tanno M, Yano T, Kouzu H, Ishikawa S, Tobisawa T, ‎Ogasawara M, Nishizawa K, Miura T. Inhibition of DPP-4 reduces acute mortality after ‎myocardial infarction with restoration of autophagic response in type 2 diabetic rats. ‎Cardiovascular Diabetology 2015;14:103. doi: 10.1186/s12933-015-0264-6. ‎
  • ‎87. Arab HH, Al-Shorbagy MY, Saad MA. Activation of autophagy and suppression of ‎apoptosis by dapagliflozin attenuates experimental inflammatory bowel disease in rats: Targeting ‎AMPK/mTOR, HMGB1/RAGE and Nrf2/HO-1 pathways. Chemico-Biological Interactions ‎‎2021;335:109368. doi: 10.1016/j.cbi.2021.109368. ‎
  • ‎88. Xu C, Wang W, Zhong J, Lei F, Xu N, Zhang Y, Xie W. Canagliflozin exerts anti-‎inflammatory effects by inhibiting intracellular glucose metabolism and promoting autophagy in ‎immune cells. Biochemical Pharmacology 2018;152:45-59. doi: 10.1016/j.bcp.2018.03.013.‎
  • ‎89. Erdogan MA, Yusuf D, Christy J, Solmaz V, Erdogan A, Taskiran E, Erbas O. Highly ‎selective SGLT2 inhibitor dapagliflozin reduces seizure activity in pentylenetetrazol-induced ‎murine model of epilepsy. BMC Neurology 2018;18(1):81. doi: 10.1186/s12883-018-1086-4. ‎
  • ‎90. Kanda R, Hiraike H, Wada-Hiraike O, Ichinose T, Nagasaka K, Sasajima Y, Ryo E, Fujii T, ‎Osuga Y, Ayabe T. Expression of the glucagon-like peptide-1 receptor and its role in regulating ‎autophagy in endometrial cancer. BMC Cancer 2018;18(1):657. doi: 10.1186/s12885-018-4570-‎‎8.‎
  • ‎91. Panagaki T, Michael M, Hölscher C. Liraglutide restores chronic ER stress, autophagy ‎impairments and apoptotic signalling in SH-SY5Y cells. Scientific Reports 2017;7(1):16158. doi: ‎‎10.1038/s41598-017-16488-x..‎
  • ‎92. Wang RF, Xue GF, Hölscher C, Tian MJ, Feng P, Zheng JY, Li DF. Post-treatment with the ‎GLP-1 analogue liraglutide alleviate chronic inflammation and mitochondrial stress induced by ‎Status epilepticus. Epilepsy Research 2018;142:45-52. doi: 10.1016/j.eplepsyres.2018.03.009. ‎
  • ‎93. Kim KH, Lee MS. Autophagy--a key player in cellular and body metabolism. Nature ‎Reviews Endocrinology 2014;10(6):322-337. doi: 10.1038/nrendo.2014.35. ‎
  • ‎94. Sarparanta J, García-Macia M, Singh R. Autophagy and mitochondria in obesity and Type 2 ‎Diabetes. Curr Diabetes Rev 2017;13(4):352-369. doi: 10.2174/1573399812666160217122530..‎
  • ‎95. Hao HH, Wang L, Guo ZJ, Bai L, Zhang RP, Shuang WB, Jia YJ, Wang J, Li XY, Liu Q. ‎Valproic acid reduces autophagy and promotes functional recovery after spinal cord injury in ‎rats. Neuroscience Bulletin 2013;29(4):484-492. doi: 10.1007/s12264-013-1355-6. ‎
  • ‎96. Felisbino MB, Ziemann M, Khurana I, Okabe J, Al-Hasani K, Maxwell S, Harikrishnan KN, ‎de Oliveira CBM, Mello MLS, El-Osta A. Valproic acid influences the expression of genes ‎implicated with hyperglycaemia-induced complement and coagulation pathways. Scientific ‎Reports 2021;11(1):2163. doi: 10.1038/s41598-021-81794-4.‎
  • ‎97. Wang X, Ma M, Teng J, Che X, Zhang W, Feng S, Zhou S, Zhang Y, Wu E, Ding X. ‎Valproate attenuates 25-kDa c-Terminal fragment of TDP-43-induced neuronal toxicity via ‎suppressing endoplasmic reticulum stress and activating autophagy. International Journal of ‎Biological Sciences 2015;11(7):752-61. doi: 10.7150/ijbs.11880. ‎
  • ‎98. Huang S, Zhu M, Wu W, Rashid A, Liang Y, Hou L, Ning Q, Luo X. Valproate pretreatment ‎protects pancreatic β-cells from palmitate-induced ER stress and apoptosis by inhibiting glycogen ‎synthase kinase-3β. Journal of Biomedical Science 2014;21(1):38. doi: 10.1186/1423-0127-21-38. ‎
  • ‎99. Najafi MR, Bazooyar B, Zare M, Aghaghazvini MR, Ansari B, Rajaei A, Dashti M. The ‎investigation of insulin resistance in two groups of epileptic patients treated with sodium ‎valproate and carbamazepine. Advanced Biomedical Research 2017;6:25. doi: 10.4103/2277-‎‎9175.201689.‎
  • ‎100. Zhang JJ, Zhou QM, Chen S, Le WD. Repurposing carbamazepine for the treatment of ‎amyotrophic lateral sclerosis in SOD1-G93A mouse model. CNS Neuroscience & Therapeutics ‎‎2018;24(12):1163-1174. doi: 10.1111/cns.12855. ‎
  • ‎101. Lee JTC, Shanina I, Chu YN, Horwitz MS, Johnson JD. Carbamazepine, a beta-cell ‎protecting drug, reduces type 1 diabetes incidence in NOD mice. Scientific Reports ‎‎2018;8(1):4588. doi: 10.1038/s41598-018-23026-w.‎
  • ‎102. Patel N, Mishra V, Patel P, Dikshit RK. A study of the use of carbamazepine, pregabalin ‎and alpha lipoic acid in patients of diabetic neuropathy. Journal of diabetes and metabolic ‎disorders 2014;13:62. doi: 10.1186/2251-6581-13-62..‎
  • ‎103. Iqbal Z, Azmi S, Yadav R, Ferdousi M, Kumar M, Cuthbertson DJ, Lim J, Malik RA, Alam ‎U. Diabetic peripheral neuropathy: epidemiology, diagnosis, and pharmacotherapy. Clinical ‎Therapeutics 2018; 40(6):828-849. doi: 10.1016/j.clinthera.2018.04.001. ‎
  • ‎104. Kang Y, Yang R, Wei Z, Zhu D, Tang T, Zhu L, Hu X, Zha G. Phenytoin sodium-‎ameliorated gingival fibroblast aging is associated with autophagy. Journal of Periodontal ‎Research 2020; 55(5):642-650. doi: 10.1111/jre.12750. ‎
  • ‎105. Yan BC, Wang J, Rui Y, Cao J, Xu P, Jiang D, Zhu X, Won MH, Bo P, Su P. ‎Neuroprotective effects of gabapentin against cerebral ischemia reperfusion-induced neuronal ‎autophagic injury via regulation of the PI3K/Akt/mTOR signaling pathways. Journal of ‎Neuropathology and Experimental Neurology 2019;78(2):157-171. doi: 10.1093/jnen/nly119. ‎
  • ‎106. Wu H, Lu MH, Wang W, Zhang MY, Zhu QQ, Xia YY, Xu RX, Yang Y, Chen LH, Ma ‎QH. Lamotrigine reduces β-Site AβPP-cleaving enzyme 1 protein levels through induction of ‎autophagy. Journal of Alzheimer’s Disease 2015;46(4):863-876. doi: 10.3233/JAD-143162. ‎
  • ‎107. Son JW, Kim S. Comprehensive review of current and upcoming anti-obesity drugs. ‎Diabetes & Metabolism Journal 2020;44(6):802-818. doi: 10.4093/dmj.2020.0258.‎
  • ‎108. Dixon SJ, Lemberg KM, Lamprecht MR, Skouta R, Zaitsev EM, Gleason CE, Patel DN, ‎Bauer AJ, Cantley AM, Yang WS, Morrison B 3rd, Stockwell BR. Ferroptosis: an iron-‎dependent form of nonapoptotic cell death. Cell 2012;149(5):1060-1072. doi: ‎‎10.1016/j.cell.2012.03.042.‎
  • ‎109. Chen S, Chen Y, Zhang Y, Kuang X, Liu Y, Guo M, Ma L, Zhang D, Li Q. Iron ‎metabolism and ferroptosis in epilepsy. Frontiers in Neuroscience 2020;14:601193. doi: ‎‎10.3389/fnins.2020.601193.‎
  • ‎110. Kahn-Kirby AH, Amagata A, Maeder CI, Mei JJ, Sideris S, Kosaka Y, Hinman A, Malone ‎SA, Bruegger JJ, Wang L, Kim V, Shrader WD, Hoff KG, Latham JC, Ashley EA, Wheeler MT, ‎Bertini E, Carrozzo R, Martinelli D, Dionisi-Vici C, Chapman KA, Enns GM, Gahl W, Wolfe L, ‎Saneto RP, Johnson SC, Trimmer JK, Klein MB, Holst CR. Targeting ferroptosis: A novel ‎therapeutic strategy for the treatment of mitochondrial disease-related epilepsy. PLoS One ‎‎2019;14(3):e0214250. doi: 10.1371/journal.pone.0214250.‎
  • ‎111. Sha W, Hu F, Xi Y, Chu Y, Bu S. Mechanism of ferroptosis and Its role in Type 2 Diabetes ‎Mellitus. Journal of Diabetes Research 2021;2021:9999612. doi: 10.1155/2021/9999612.‎
  • ‎112. Yang J, Zhou Y, Xie S, Wang J, Li Z, Chen L, Mao M, Chen C, Huang A, Chen Y, Zhang ‎X, Khan NUH, Wang L, Zhou J. Metformin induces ferroptosis by inhibiting UFMylation of ‎SLC7A11 in breast cancer. Journal of Experimental & Clinical Cancer Research 2021;40(1):206. ‎doi: 10.1186/s13046-021-02012-7. ‎
  • ‎113. Wang Z, Wu Z, Xie Z, Zhou W, Li M. Metformin Attenuates Ferroptosis and Promotes ‎Functional Recovery of Spinal Cord Injury. World Neurosurgery 2022:S1878-8750(22)01231-1. ‎doi: 10.1016/j.wneu.2022.08.121.‎
  • ‎114. Zhao Y, Zhao Y, Tian Y, Zhou Y. Metformin suppresses foam cell formation, inflammation ‎and ferroptosis via the AMPK/ERK signaling pathway in ox LDL induced THP 1 monocytes. ‎Experimental and Therapeutic Medicine 2022;24(4):636. doi: 10.3892/etm.2022.11573..‎
  • ‎115. Haznedar P, Doğan Ö, Albayrak P, Öz Tunçer G, Teber S, Deda G, Eminoglu FT. Effects ‎of levetiracetam and valproic acid treatment on liver function tests, plasma free carnitine and ‎lipid peroxidation in childhood epilepsies. Epilepsy Res 2019;153:7-13. doi: ‎‎10.1016/j.eplepsyres.2019.03.009. ‎
  • ‎116. Srivastava AK, Gupta SK, Jain S, Gupta YK. Effect of melatonin and phenytoin on an ‎intracortical ferric chloride model of posttraumatic seizures in rats. Methods and Findings in ‎Experimental and Clinical Pharmacology 2002;24(3):145-149. doi: ‎‎10.1358/mf.2002.24.3.802299. ‎
  • ‎117. Sarangi SC, Kakkar AK, Kumar R, Gupta YK. Effect of lamotrigine, levetiracetam & ‎topiramate on neurobehavioural parameters & oxidative stress in comparison with valproate in ‎rats. Indian Journal of Medical Research 2016;144(1):104-111. doi: 10.4103/0971-5916.193296. ‎
  • ‎118. Yüksel A, Cengiz M, Seven M, Ulutin T. Erythrocyte glutathione, glutathione peroxidase, ‎superoxide dismutase and serum lipid peroxidation in epileptic children with valproate and ‎carbamazepine monotherapy. Journal of Basic and Clinical Physiology and Pharmacology ‎‎2000;11(1):73-81. doi: 10.1515/jbcpp.2000.11.1.73. ‎
Hacettepe Üniversitesi Eczacılık Fakültesi Dergisi-Cover
  • Yayın Aralığı: Yılda 4 Sayı
  • Başlangıç: 1981
  • Yayıncı: Hacettepe Üniversitesi Eczacılık Fakültesi Dekanlığı