TWO FORMULAS CONTIGUOUS TO A QUADRATIC TRANSFORMATION DUE TO KUMMER WITH AN APPLICATION

TWO FORMULAS CONTIGUOUS TO A QUADRATIC TRANSFORMATION DUE TO KUMMER WITH AN APPLICATION

We aim at establishing two identities contiguous to Kummer’s transformation :(1 − z)−a2F1" 12a, 12a +12;b +12;z1 − z2#= 2F1a, b ;2b ;2zby using two different methods. They are further applied to prove two summation formulas for the series 3F2(1), closely related to the classical Watson’s theorem due to Lavoie.

___

  • [1] Bailey, W. N. Product of generalized hypergeometric series, Proc. London Math. Soc. (ser. 2) 28, 242–254, 1928.
  • [2] Mortici, C. New improvements of the Stirling formula, Appl. Math. Comput. 217, 699–704, 2010.
  • [3] Mortici, C. A quicker convergence toward the gamma constant with the logarithm term involving the constant e, Carpathian J. Math. 26 (1), 86–91, 2010.
  • [4] Erd´elyi, A., Magnus, W., Oberhettinger, F. and Tricomi, F. G. Tables of Integral Transforms (Vol. 2) (McGraw-Hill Book Company, New York, Toronto and London, 1954).
  • [5] Kim, Y. S., Rakha, M. A. and Rathie, A. K. Generalization of Kummer’s second theorem with applications, Comput. Math. Math. Phys. 50 (3), 387–402, 2010.
  • [6] Kim, Y. S., Rakha, M. A. and Rathie, A. K. Extensions of certain classical summation theorems for the series 2F1 and 3F2 with applications in Ramanujan’s summations, Int. J. Math. Math. Sci., 2011, to appear.
  • [7] Lavoie, J. L. Some summation formulas for the series 3F2(1), Math. Comput. 49 (179), 269–274, 1987.
  • [8] Lavoie, J. L., Grondin, F. and Rathie, A. K. Generalizations of Watson’s theorem on the sum of a 3F2, Indian J. Math. 34, 23–32, 1992.
  • [9] Lavoie, J. L., Grondin, F., Rathie, A. K. and Arora, K. Generalizations of Dixon’s theorem on the sum of a 3F2, Math. Comput. 62, 267–276, 1994.
  • [10] Lavoie, J. L., Grondin, F. and Rathie, A. K. Generalizations of Whipple’s theorem on the sum of a 3F2, J. Comput. Appl. Math. 72, 293–300, 1996.
  • [11] Lewanowicz, S. Generalized Watson’s summation formula for 3F2(1), J. Comput. Appl. Math. 86, 375–386, 1997.
  • [12] Milgram, M. On hypergeometric 3F2(1), Arxiv: math. CA/ 0603096, 2006. [13] Rainville, E. D. Special Functions (Macmillan Company, New York, 1960; Reprinted by Chelsea Publishing Company, Bronx, New York, 1971).
  • [14] Rakha, M. A. and Rathie, A. K. Generalizations of classical summation theorems for the series 2F1 and 3F2 with applications, Integral Transformations and Special Functions, 2011, to appear.
  • [15] Rathie, A. K. and Nagar, V. On Kummer’s second theorem involving product of generalized hypergeometric series, Le Math. (Catania) 50, 35–38, 1995.
  • [16] Srivastava, H. M and Choi, J. Series Associated with the Zeta and Related Functions (Kluwer Academic Publishers, Dordrecht, Boston and London, 2001).
  • [17] Vidunas, R. A generalization of Kummer’s identity, Rocky Mount. J. Math. 32, 919–935, 2002; also available at http://arxiv.org/abs/math CA/ 005095