Super(a,d)-star-antimagic graphs
Super(a,d)-star-antimagic graphs
A simple graph G = (V, E) admitting an H-covering is said to be (a, d)-H-antimagic if there exists a bijection f : V ∪ E → {1, 2, . . . , |V | + |E|} such that, for all subgraphs H′ of G isomorphic to H, wtf (H′) = ∑v∈V (H′)f(v) + ∑e∈E(H′)f(e), form an arithmetic progression a, a+d, . . . , a+(t−1)d, where a is the first term, d is the common difference and t is the number of subgraphs in the H-covering. Then f is called an (a, d)-H-antimagic labeling. If f(V ) = {1, 2, . . . , |V |}, then f is called super (a, d)-H-antimagic labeling. In this paper we investigate the existence of super (a,d)-star-antimagic labelings of a particular class of banana trees and construct a star-antimagic graph.
___
- [1]M. Bača, Z. Kimáková, A. Semaničová-Feňovčíková and M.A. Umar,Tree-antimagicness of disconnected graphs, Math. Probl. Eng.2015, Article ID: 504251,1–4, 2015.
- [2]M. Bača, M. Miller, J. Ryan and A. Semaničová-Feňovčíková,OnH-antimagicnessof disconnected graphs, Bull. Aust. Math. Soc.94, 201–207, 2016.
- [3]A. Gutiérrez and A. Lladó,Magic coverings, J. Combin. Math. Combin. Comput.55,43–56, 2005.
- [4]N. Inayah, A.N.M. Salman and R. Simanjuntak,On(a, d)-H-antimagic coverings ofgraphs, J. Combin. Math. Combin. Comput.71, 273–281, 2009.
- [5]N. Inayah, R. Simanjuntak, A.N.M. Salman and K.I.A. Syuhada,On(a, d)-H-antimagic total labelings for shackles of a connected graphH, Australas. J. Combin.57, 127–138, 2013.
- [6]P. Jeyanthi and P. Selvagopal,Supermagic coverings of some simple graphs, Int. J.Math. Combin.1, 33–48, 2011.
- [7]T.K. Maryati, A.N.M. Salman, E.T. Baskoro, J. Ryan and M. Miller,OnH-supermagic labelings for certain shackles and amalgamations of a connected graph,Utilitas Math.83, 333–342, 2010.
- [8]A. Semaničová-Feňovčíková, M. Bača, M. Lascsáková, M. Miller and J. Ryan,Wheelsare cycle-antimagic, Electron. Notes Discrete Math.48, 11–18, 2015.