STRONG VERSIONS OF THE THEOREMS OF WEIERSTRASS, MONTEL AND HURWITZ
Strong Versions of the Theorems of Weierstrass, Montel and Hurwitz
In this article, using the notion of statistical convergence, we relax the hypotheses of the well-known theorems from classical complex analysis, such as Weierstrass’ Theorem, Montel’s Theorem and Hurwitz’s Theorem. So, we obtain more powerful results than the classical ones in complex analysis.
___
- Connor, J. S. The statistical and p-Ces´aro convergence of sequences, Analysis 8, 47–63, Demirci, K. A criterion for A-statistical convergence, Indian J. Pure Appl. Math. 29, 559– , 1998.
- Fast, H. Sur la convergence statistique, Colloq. Math. 2, 241–244, 1951.
- Freedman, A. R. and Sember, J. J. Densities and summability, Pacific J. Math. 95, 293–305, Fridy, J. A. On statistical convergence, Analysis 5, 301–313, 1985.
- Fridy, J. A. Statistical limit points, Proc. Amer. Math. Soc. 118, 1187–1192, 1993.
- Fridy, J. A. and Orhan, C. Statistical limit superior and limit inferior, Proc. Amer. Math. Soc. 125, 3625–3631, 1997.
- Hardy, G. H. Divergent Series (Oxford Univ. Press, London, 1949).
- Kolk, E. Matrix summability of statistically convergent sequences, Analysis 13, 77–83, 1993.
- Miller, H. I. A measure theoretical subsequence characterization of statistical convergence, Trans. Amer. Math. Soc. 347, 1811–1819, 1995.
- Mursaleen, M. and Edely, Osama H. H. Generalized statistical convergence, Inform. Sci. 162, –294, 2004.
- Narasimhan, R. Complex Analysis in One Variable (Birkh¨auser, Boston, 1985).
- Sava¸s, E. On strong almost A-summability with respect to a modulus and statistical conver- gence, Indian J. Pure Appl. Math. 23, 217–222, 1992.